Accurate Measurement of the True Plane-Wave Shielding Effectiveness of Thick Polymer Composite Materials via Rectangular Waveguides

. 2019 Oct 01 ; 11 (10) : . [epub] 20191001

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31581519

Grantová podpora
17-24730S Grantová Agentura České Republiky
LO1504 Ministerstvo Školství, Mládeže a Tělovýchovy
LO1303 Ministerstvo Školství, Mládeže a Tělovýchovy

This paper presents a methodology for accurately gauging the true plane wave shielding effectiveness of composite polymer materials via rectangular waveguides. Since the wave propagation of the waveguides is not in the form of plane wave patterns, it is necessary to post-process the S-parameters for the measured data of the waveguide lines to obtain such patterns and ascertain the effectiveness of true plane wave shielding. The authors propose two different methods to achieve this. The first applies simple renormalization of S-parameters, where reference impedance is changed from the value for the waveguide to that for free space, which ensures good accuracy of shielding effectiveness with a small degree of discontinuity across the range of frequencies. The other relies on rigorous extraction of the composite materials' effective permittivity and permeability ascertained from rectangular waveguides; afterward, plane wave shielding effectiveness is calculated analytically and gives very high accuracy. Both procedures assume the given samples are isotropic in character. We validated the accuracy of the methodologies by conducting tests on a set of synthetic samples of 2 mm thickness with unit permittivity and variable conductivity and on a dielectric material of known permittivity (FR4 laminate). The applicability of both methods was further proven by analyzing the isotropic composite materials, a process involving the use of iron particles embedded in a dielectric matrix. The synthetic samples and an FR4 material were tested to check the accuracy of the methods. Based on numerical studies and measurements, we concluded that materials with a shielding effectiveness of up to 25 dB could be measured at a maximum amplitude error of 1 dB to 3dB to a frequency of 18 GHz, depending on the relative permittivity of the material; hence, the first method was suitable for approximation purposes. For maximal accuracy, the second method typically demonstrated an amplitude error of below 0.5 dB to the same frequency across the entire range.

Zobrazit více v PubMed

MIL-STD-285, Military Standard. Attenuation Measurements for Enclosures, Electromagnetic Shielding, for Electronic Test Purposes, Method of. Government Printing Office; Washington, DC, USA: 1956.

IEEE Std. 299-1997, IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures. IEEE; Piscataway, NJ, USA: 1996.

ASTM D 4935-89. Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. ASTM; West Conshohocken, PA, USA: 1989.

ASTM D 4935-99. Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. ASTM; West Conshohocken, PA, USA: 1999.

Wieckowski T.W., Janukiewicz J.M. Methods of Evaluating the Shielding Effectiveness of Textiles. Fibers Text. East. Eur. 2006;14:18–22.

Sarto M.S., Tamburrano A. Innovative Test Method for the Shielding Effectiveness Measurement of Conductive Thin Films in a Wide Frequency Range. IEEE Trans. Electromagn. Compat. 2006;48:331–341. doi: 10.1109/TEMC.2006.874664. DOI

Tamburrano A., Desideri D., Maschio A., Sarto M.S. Coaxial Waveguide Methods for Shielding Effectiveness Measurement of Planar Materials Up to 18 GHz. IEEE Trans. Electromagn. Compat. 2014;56:1386–1395. doi: 10.1109/TEMC.2014.2329238. DOI

Badic M., Marinescu M.J. The failure of coaxial TEM cells ASTM standards methods in H.F. range; Proceedings of the 2002 IEEE International Symposium on Electromagnetic Compatibility; Minneapolis, MN, USA. 19–23 August 2002; pp. 29–34.

Hoang N.N., Mianem J.L., Wojkiewicz J.L. Modeling of Electromagnetic Shielding Effectiveness of Multilayer Conducting Composites in the Microwave Band; Proceedings of the 2006 First International Conference on Communications and Electronics; Hanoi, Vietnam. 10–11 October 2006; pp. 1–4.

Varadan V.V., Hollinger R.D., Ghodgaonkar D.K., Varadan V.K. Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. IEEE Trans. Instrum. Meas. 1990;39:387–394.

Chen X., Grzegorczyk T.M., Wu B.I., Kong J.A. Robust method to retrieve the constitutive effective parameters of metamaterial. Phys. Rev. E. 2006;70:016608. doi: 10.1103/PhysRevE.70.016608. PubMed DOI

Szabo Z., Park G.H., Hedge R., Li E.P. A Unique Extraction of Metamaterial Parameters Based on Kramers–Kronig Relationship. IEEE Trans. Microw. Theory Tech. 2010;58:2646–2653. doi: 10.1109/TMTT.2010.2065310. DOI

Chen L.F., Ong C.K., Neo C.P., Varadan V.V., Varadan V.K. Microwave Electronics: Measurement and Materials Characterization. John Willey; Hoboken, NJ, USA: 2004. 552p.

Yu M., Yang P., Fu J., Liu S., Qi S. Study on the characteristics of magneto-sensitive electromagnetic wave-absorbing properties of magnetorheological elastomers. Smart Mater. Struct. 2016;25:085046. doi: 10.1088/0964-1726/25/8/085046. DOI

Flores M., Calo A., Gorriti A., Cortina D., Rubio G., Grajal J. Microwire composite electromagnetic parameters extraction by waveguide measurements at X-band. J. Electrom. Waves Appl. 2013;28:202–213. doi: 10.1080/09205071.2013.862186. DOI

Tereshchenko O.V., Buesink F.J.K., Leferink F.B.J. Measurement of Complex Permittivity of Composite Materials using Waveguide Method; Proceedings of the 10th International Symposium on Electromagnetic Compatibility (EMC Europe 2011); York, UK. 26–30 September 2011.

Baginski M.E., Faircloth D.L., Deshpande M.D. Comparison of Two Optimization Techniques for the Estimation of Complex Permittivities of Multilayered Structures Using Waveguide Measurements. IEEE Trans. Microw. Theory Tech. 2005;53:3251–3259. doi: 10.1109/TMTT.2005.855133. DOI

Pozar D.M. Microwave Engineering. 4th ed. John Willey; Hoboken, NJ, USA: 2012. 756p.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Polyurethane-Carbon Nanotubes Composite Dual Band Antenna for Wearable Applications

. 2020 Nov 23 ; 12 (11) : . [epub] 20201123

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...