DNA Methylation Validation Methods: a Coherent Review with Practical Comparison
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
31582911
PubMed Central
PMC6771119
DOI
10.1186/s12575-019-0107-z
PII: 107
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, MS-HRM, MSRE, Pyrosequencing, Validation methods, qMSP,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Here, we present a practical overview of four commonly used validation methods for DNA methylation assessment: methylation specific restriction endonucleases (MSRE) analysis, pyrosequencing, methylation specific high-resolution DNA melting (MS-HRM) and quantitative methylation specific polymerase chain reaction (qMSP). Using these methods, we measured DNA methylation levels of three loci in human genome among which one was highly methylated, one intermediately methylated and one unmethylated. We compared the methods in terms of primer design demands, methods' feasibility, accuracy, time and money consumption, and usability for clinical diagnostics. Pyrosequencing and MS-HRM proved to be the most convenient methods. Using pyrosequencing, it is possible to analyze every CpG in a chosen region. The price of the instrument may represent the main limitation of this methodology. MS-HRM is a simple PCR-based method. The measurement was quick, cheap and very accurate. MSRE analysis is based on a methylation specific digestion of DNA. It does not require a bisulfite conversion of DNA as the other methods. MSRE analysis was very easy to perform, however, it was not suitable for intermediately methylated regions and it was also quite expensive. qMSP is a qPCR-based method that uses primers designed specifically for methylated and unmethylated alleles of a chosen region. This was the least accurate method and also the primer design and optimization of PCR conditions were highly demanding.
Zobrazit více v PubMed
Schubeler D. Function and information content of DNA methylation. Nature. 2015;517(7534):321. doi: 10.1038/nature14192. PubMed DOI
Jin Z, Liu Y. DNA methylation in human diseases. Genes & Diseases. 2018;5(1):1–8. doi: 10.1016/j.gendis.2018.01.002. PubMed DOI PMC
Levenson VV. DNA methylation as a universal biomarker. Expert Rev Mol Diagn. 2010;10(4):481–488. doi: 10.1586/erm.10.17. PubMed DOI PMC
Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012;13(10):679–692. doi: 10.1038/nrg3270. PubMed DOI
Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17(1):208. doi: 10.1186/s13059-016-1066-1. PubMed DOI PMC
Lövkvist C, Dodd IB, Sneppen K, Haerter JO. DNA methylation in human epigenomes depends on local topology of CpG sites. Nucleic Acids Res. 2016;44(11):5123–5132. doi: 10.1093/nar/gkw124. PubMed DOI PMC
Cedar H, Solage A, Glaser G, Razin A. Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI. Nucleic Acids Res. 1979;6(6):2125–2132. doi: 10.1093/nar/6.6.2125. PubMed DOI PMC
Fraga MF, Esteller M. DNA Methylation: A Profile of Methods and Applications. BioTechniques. 2002;33(3):632–649. doi: 10.2144/02333rv01. PubMed DOI
Singer-Sam J, LeBon JM, Tanguay RL, Riggs AD. A quantitative Hpall-PCR assay to measure methylation of DNA from a small number of cells. Nucleic Acids Res. 1990;18(3):687. doi: 10.1093/nar/18.3.687. PubMed DOI PMC
Itoi E, Kokubun S, Hashimoto K, Roach HI. Improved Quantification of DNA Methylation Using Methylation-Sensitive Restriction Enzymes and Real-Time PCR. Epigenetics. 2007;2(2):86–91. doi: 10.4161/epi.2.2.4203. PubMed DOI
Kurdyukov S, Bullock M. DNA Methylation Analysis: Choosing the Right Method. Biology. 2016;5(1):3. doi: 10.3390/biology5010003. PubMed DOI PMC
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007;35(suppl2):W74. PubMed PMC
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC bioinformatics. 2012;13(1):134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC
Hayatsu H, Wataya Y, Kazushige K. Addition of sodium bisulfite to uracil and to cytosine. J Am Chem Soc. 1970;92(3):724–726. doi: 10.1021/ja00706a062. PubMed DOI
Sant KE, Nahar MS, Dolinoy DC. DNA methylation screening and analysis. Methods Mol Biol (Clifton, NJ). 2012;886:385–406. PubMed PMC
Hernández HG, Tse MY, Pang SC, Arboleda H, Forero DA. Optimizing methodologies for PCR-based DNA methylation analysis. BioTechniques. 2013;55(4):181–197. doi: 10.2144/000114087. PubMed DOI
Frommer M, Mcdonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. 1992. PubMed PMC
Reed K, Poulin ML, Yan L, Parissenti AM. Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal Biochem. 2010;397(1):96–106. doi: 10.1016/j.ab.2009.10.021. PubMed DOI
Tost J, El abdalaoui H, Glynne Gut I. Serial pyrosequencing for quantitative DNA methylation analysis. BioTechniques. 2006;40(6):721–726. doi: 10.2144/000112190. PubMed DOI
Delaney C, Garg SK, Yung R. Analysis of DNA methylation by pyrosequencing. Methods Mol Biol. 2015;1343:249. doi: 10.1007/978-1-4939-2963-4_19. PubMed DOI PMC
Tost J, Gut IG. DNA methylation analysis by pyrosequencing. Nat Protoc. 2007;2(9):2265–2275. doi: 10.1038/nprot.2007.314. PubMed DOI
Li L.-C., Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18(11):1427–1431. doi: 10.1093/bioinformatics/18.11.1427. PubMed DOI
Arányi T, Váradi A, Simon I, Tusnády GE. The BiSearch web server. BMC bioinformatics. 2006;7(1):431. doi: 10.1186/1471-2105-7-431. PubMed DOI PMC
King CR, Scott-Horton T. Pyrosequencing. In: Marsh S, editor. Pyrosequencing protocols Totowa. NJ: Humana Press; 2007. pp. 39–55.
Guo D, Milewicz DM. Universal primer applications for pyrosequencing. In: Marsh S, editor. Pyrosequencing protocols Totowa. NJ: Humana Press; 2007. pp. 57–62. PubMed
Wojdacz TK, Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 2007;35(6):e41. doi: 10.1093/nar/gkm013. PubMed DOI PMC
Tse MY, Ashbury JE, Zwingerman N, King WD, Taylor SA, Pang SC. A refined, rapid and reproducible high resolution melt (HRM)-based method suitable for quantification of global LINE-1 repetitive element methylation. BMC Res Notes. 2011;4(1):565. doi: 10.1186/1756-0500-4-565. PubMed DOI PMC
Smith E, Jones ME, Drew PA. Quantitation of DNA methylation by melt curve analysis. BMC Cancer. 2009;9(1):123. doi: 10.1186/1471-2407-9-123. PubMed DOI PMC
Malentacchi F, Forni G, Vinci S, Orlando C. Quantitative evaluation of DNA methylation by optimization of a differential-high resolution melt analysis protocol. Nucleic Acids Res. 2009;37(12):e86. doi: 10.1093/nar/gkp383. PubMed DOI PMC
Wojdacz TK, Borgbo T, Hansen LL. Primer design versus PCR bias in methylation independent PCR amplifications. Epigenetics. 2009;4(4):231–234. doi: 10.4161/epi.9020. PubMed DOI
Wojdacz TK, Lotte HL. Reversal of PCR bias for improved sensitivity of the DNA methylation melting curve assay. BioTechniques. 2006;41(3):274–278. doi: 10.2144/000112240. PubMed DOI
Hansen LL, Wojdacz TK, Dobrovic A. Methylation-sensitive high-resolution melting. Nat Protoc. 2008;3(12):1903–1908. doi: 10.1038/nprot.2008.191. PubMed DOI
Wojdacz TK, Hansen LL, Dobrovic A. A new approach to primer design for the control of PCR bias in methylation studies. BMC Res Notes. 2008;1(1):54. doi: 10.1186/1756-0500-1-54. PubMed DOI PMC
Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-Specific PCR: A Novel PCR Assay for Methylation Status of CpG Islands. Proc Natl Acad Sci U S A. 1996;93(18):9821–9826. doi: 10.1073/pnas.93.18.9821. PubMed DOI PMC
Derks S, Lentjes MH, Hellebrekers DM, de Bruïne AP, Herman JG, van Engeland M. Methylation-specific PCR unraveled. Cellular oncology : the official journal of the International Society for Cellular Oncology. 2004;26(5–6):291–299. PubMed PMC
Husseiny MI, Kuroda A, Kaye AN, Nair I, Kandeel F, Ferreri K. Development of a Quantitative Methylation-Specific Polymerase Chain Reaction Method for Monitoring Beta Cell Death in Type 1 Diabetes. PLoS One. 2012;7(10):e47942. doi: 10.1371/journal.pone.0047942. PubMed DOI PMC
Akirav EM, Lebastchi J, Galvan EM, Henegariu O, Akirav M, Ablamunits V, et al. Detection of β cell death in diabetes using differentially methylated circulating DNA. Proc Natl Acad Sci U S A. 2011;108(47):19018–19023. doi: 10.1073/pnas.1111008108. PubMed DOI PMC
Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000;28(8):e32. doi: 10.1093/nar/28.8.e32. PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Šestáková Šárka, Krejčík Zdeněk, Folta Adam, Cerovská Ela, Šálek Cyril, Merkerová Michaela Dostálová, Pecherková Pavla, Ráčil Zdeněk, Mayer Jiří, Cetkovský Petr, Remešová Hana. DNA methylation and hydroxymethylation patterns in acute myeloid leukemia patients with mutations in DNMT3A and IDH1/2 and their combinations. Cancer Biomarkers. 2019;25(1):43–51. doi: 10.3233/CBM-182176. PubMed DOI
Dwight Z, Palais R, Wittwer C. uAnalyze: web-based high-resolution DNA melting analysis with comparison to thermodynamic predictions. IEEE/ACM Trans Comput Biol Bioinform. 2012;9(6):1805–1811. doi: 10.1109/TCBB.2012.112. PubMed DOI
Pfaffl MW. Real-time qPCR amplification efficiency. In: Dorak MT, editor. Real-time PCR. 1. London: Taylor & Francis; 2007. pp. 68–71.
DNA Methylation in Solid Tumors: Functions and Methods of Detection