Kinetic characteristics of propofol-induced inhibition of electron-transfer chain and fatty acid oxidation in human and rodent skeletal and cardiac muscles
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31584947
PubMed Central
PMC6777831
DOI
10.1371/journal.pone.0217254
PII: PONE-D-19-12573
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- krysa rodu Rattus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mastné kyseliny metabolismus MeSH
- oxidace-redukce účinky léků MeSH
- potkani Wistar MeSH
- propofol farmakologie MeSH
- respirační komplex I metabolismus MeSH
- respirační komplex IV metabolismus MeSH
- senioři MeSH
- srdeční mitochondrie metabolismus MeSH
- svalové mitochondrie metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mastné kyseliny MeSH
- propofol MeSH
- respirační komplex I MeSH
- respirační komplex IV MeSH
INTRODUCTION: Propofol causes a profound inhibition of fatty acid oxidation and reduces spare electron transfer chain capacity in a range of human and rodent cells and tissues-a feature that might be related to the pathogenesis of Propofol Infusion Syndrome. We aimed to explore the mechanism of propofol-induced alteration of bioenergetic pathways by describing its kinetic characteristics. METHODS: We obtained samples of skeletal and cardiac muscle from Wistar rat (n = 3) and human subjects: vastus lateralis from hip surgery patients (n = 11) and myocardium from brain-dead organ donors (n = 10). We assessed mitochondrial functional indices using standard SUIT protocol and high resolution respirometry in fresh tissue homogenates with or without short-term exposure to a range of propofol concentration (2.5-100 μg/ml). After finding concentrations of propofol causing partial inhibition of a particular pathways, we used that concentration to construct kinetic curves by plotting oxygen flux against substrate concentration during its stepwise titration in the presence or absence of propofol. By spectrophotometry we also measured the influence of the same propofol concentrations on the activity of isolated respiratory complexes. RESULTS: We found that human muscle and cardiac tissues are more sensitive to propofol-mediated inhibition of bioenergetic pathways than rat's tissue. In human homogenates, palmitoyl carnitine-driven respiration was inhibited at much lower concentrations of propofol than that required for a reduction of electron transfer chain capacity, suggesting FAO inhibition mechanism different from downstream limitation or carnitine-palmitoyl transferase-1 inhibition. Inhibition of Complex I was characterised by more marked reduction of Vmax, in keeping with non-competitive nature of the inhibition and the pattern was similar to the inhibition of Complex II or electron transfer chain capacity. There was neither inhibition of Complex IV nor increased leak through inner mitochondrial membrane with up to 100 μg/ml of propofol. If measured in isolation by spectrophotometry, propofol 10 μg/ml did not affect the activity of any respiratory complexes. CONCLUSION: In human skeletal and heart muscle homogenates, propofol in concentrations that are achieved in propofol-anaesthetized patients, causes a direct inhibition of fatty acid oxidation, in addition to inhibiting flux of electrons through inner mitochondrial membrane. The inhibition is more marked in human as compared to rodent tissues.
Zobrazit více v PubMed
Madera Sharline, Shipman William and R N. Application to Add Propofol to the Model List of Essential Medicines. J Chem Inf Model. 2013;53: 1689–1699. PubMed
Wong JM. Propofol infusion syndrome. Am J Ther. 2010;17(5): 487–91. 10.1097/MJT.0b013e3181ed837a PubMed DOI
Vasile B, Rasulo F, Candiani A, Latronico N. The pathophysiology of propofol infusion syndrome: A simple name for a complex syndrome. Intensive Care Med. 2003;29(9): 1417–25. 10.1007/s00134-003-1905-x PubMed DOI
Krajčová A, Waldauf P, Anděl M, Duška F. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care. 2015;19: 398 10.1186/s13054-015-1112-5 PubMed DOI PMC
Branca D, Roberti MS, Lorenzin P, Vincenti E S G. Influence of the anesthetic 2,6-diisopropylphenol on the oxidative phosphorylation of isolated rat liver mitochondria. Biochem Pharmacol. 1991;42(1): 87–90. 10.1016/0006-2952(91)90684-w PubMed DOI
Branca D, Vincenti E S G. Influence of the anesthetic 2,6-diisopropylphenol (propofol) on isolated rat heart mitochondria. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1995;110(1): 41–5. 10.1016/0742-8413(94)00078-O PubMed DOI
Branca D, Roberti MS, Vincenti E S G. Uncoupling effect of the general anesthetic 2,6-diisopropylphenol in isolated rat liver mitochondria. Arch Biochem Biophys. 1991;290(2): 517–21. 10.1016/0003-9861(91)90575-4 PubMed DOI
Rigoulet M, Devin A, Avéret N, Vandais B, Guérin B. Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the general anesthetic 2,6-diisopropylphenol. Eur J Biochem. 1996;241(1): 280–5. 10.1111/j.1432-1033.1996.0280t.x PubMed DOI
Tong XX, Kang Y, Liu FZ, Zhang WS L J. [Effect of prolonged infusion of propofol on the liver mitochondria respiratory function in rabbits]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2010;41(6): 1021–3. PubMed
Krajčová A, Løvsletten NG, Waldauf P, Frič V, Elkalaf M, Urban T, et al. Effects of Propofol on Cellular Bioenergetics in Human Skeletal Muscle Cells. Crit Care Med. 2017;46(3): e206–e212. 10.1097/CCM.0000000000002875 PubMed DOI
Wolf A, Weir P, Segar P, Stone J. Impaired fatty acid oxidation in propofol infusion syndrome Relation between occurrence of type 1 diabetes and asthma. Lancet. 2001;357(9256): 606–7. PubMed
Wolf AR, Potter F. Propofol infusion in children: When does an anesthetic tool become an intensive care liability? Paediatr Anaesth. 2004;14(6): 435–8. 10.1111/j.1460-9592.2004.01332.x PubMed DOI
Withington DE, Decell MK, Al Ayed T. A case of propofol toxicity: Further evidence for a causal mechanism. Paediatr Anaesth. 2004;14(6): 505–8. 10.1111/j.1460-9592.2004.01299.x PubMed DOI
Vanlander AV, Okun JG, De Jaeger A, Smet J, De Latter E, De Paepe B, et al. Possible pathogenic mechanism of propofol infusion syndrome involves coenzyme Q. Anesthesiology. 2015;122(2): 343–52. 10.1097/ALN.0000000000000484 PubMed DOI
Sumi C, Okamoto A, Tanaka H, Nishi K, Kusunoki M, Shoji T, et al. Propofol induces a metabolic switch to glycolysis and cell death in a mitochondrial electron transport chain-dependent manner. PLoS One. 2018;13(2): e0192796 10.1371/journal.pone.0192796 PubMed DOI PMC
Sumi C, Okamoto A, Tanaka H, Kusunoki M, Shoji T, Uba T, et al. Suppression of mitochondrial oxygen metabolism mediated by the transcription factor HIF-1 alleviates propofol-induced cell toxicity. Sci Rep. 2018;8(1): 8987 10.1038/s41598-018-27220-8 PubMed DOI PMC
Ziak J, Krajcova A, Jiroutkova K, Nemcova V, Dzupa V, Duska F. Assessing the function of mitochondria in cytosolic context in human skeletal muscle: Adopting high-resolution respirometry to homogenate of needle biopsy tissue samples. Mitochondrion. 2015;21: 106–12. 10.1016/j.mito.2015.02.002 PubMed DOI
Fontana-Ayoub, M Fasching M, Gnaiger E. http://wiki.oroboros.at/images/3/3c/MiPNet03.02_Chemicals-Media.pdf. In: Mitochondrial physiology network. 2016 pp. 1–10.
Krajčová A, Megvinet D, Urban T, Waldauf P, Hlavička J, Budera P, et al. High resolution respirometry to assess function of mitochondria in native homogenates of human heart muscle. Circ Res (under Rev. 2018;). PubMed PMC
Dykens JA, Will Y. Drug-Induced Mitochondrial Dysfunction. John Wiley & Sons, Inc.; 2008. 10.1002/9780470372531 DOI
Lanza I, Nair K. Functional assessment of isolated mitochondria in vitro. Methods Enzym. 2009;457: 349–72. 10.1016/S0076-6879(09)05020-4 PubMed DOI PMC
Gnaiger E. https://www.researchgate.net/profile/Erich_Gnaiger/publication/267851204_Oxygen_Solubility_in_Experimental_Media/links/553dd3eb0cf29b5ee4bce1d6/Oxygen-Solubility-in-Experimental-Media.pdf. In: Mitochondrial physiology network. 2010 pp. 1–12.
Herregods L, Rolly G, Versichelen L, Rosseel MT. Propofol combined with nitrous oxide-oxygen for induction and maintenance of anaesthesia. Anaesthesia. 1987;42(4): 360–5. 10.1111/j.1365-2044.1987.tb03975.x PubMed DOI
Casati A, Fanelli G, Casaletti E, Colnaghi E, Cedrati V, Torri G. Clinical assessment of target-controlled infusion of propofol during monitored anesthesia care. Can J Anaesth. 1999;46(3): 235–9. 10.1007/BF03012602 PubMed DOI
Rigoulet M, Devin A, Avéret N, Vandais B, Guérin B. Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the general anesthetic 2,6-diisopropylphenol. Eur J Biochem. 1996;241: 280–5. 10.1111/j.1432-1033.1996.0280t.x PubMed DOI
Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc. 2012;7(6): 1235–46. 10.1038/nprot.2012.058 PubMed DOI
Diedrich DA, Brown DR. Analytic Reviews: Propofol Infusion Syndrome in the ICU. J Intensive Care Med. 2011;26(2): 59–72. 10.1177/0885066610384195 PubMed DOI
Vollmer JP, Haen S, Wolburg H, Lehmann R, Steiner J, Reddersen S, et al. Propofol Related Infusion Syndrome: Ultrastructural Evidence for a Mitochondrial Disorder. Crit Care Med. 2018;46(1): e91–e94. 10.1097/CCM.0000000000002802 PubMed DOI
Schenkman KA, Yan S. Propofol impairment of mitochondrial respiration isolated perfused guinea pig hearts determined by reflectance spectroscopy. Crit Care Med. 2000;28(1): 172–7. 10.1097/00003246-200001000-00028 PubMed DOI
Campos S, Félix L, Venâncio C, Antunes L, Peixoto F. Decrease of state III mitochondrial respiration by prolonged infusion of propofol vehicle in rabbit liver. Eur J Anaesthesiol. 2013;30: 154–154. 10.1097/00003643-201306001-00479 DOI