High resolution respirometry to assess function of mitochondria in native homogenates of human heart muscle
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31940313
PubMed Central
PMC6961865
DOI
10.1371/journal.pone.0226142
PII: PONE-D-19-09122
Knihovny.cz E-zdroje
- MeSH
- citrátsynthasa metabolismus MeSH
- dospělí MeSH
- energetický metabolismus MeSH
- kryoprezervace MeSH
- kyslík metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mastné kyseliny metabolismus MeSH
- mitochondriální membrány metabolismus MeSH
- oxidace-redukce MeSH
- senioři MeSH
- srdeční mitochondrie metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- citrátsynthasa MeSH
- kyslík MeSH
- mastné kyseliny MeSH
Impaired myocardial bioenergetics is a hallmark of many cardiac diseases. There is a need of a simple and reproducible method of assessment of mitochondrial function from small human myocardial tissue samples. In this study we adopted high-resolution respirometry to homogenates of fresh human cardiac muscle and compare it with isolated mitochondria. We used atria resected during cardiac surgery (n = 18) and atria and left ventricles from brain-dead organ donors (n = 12). The protocol we developed consisting of two-step homogenization and exposure of 2.5% homogenate in a respirometer to sequential addition of 2.5 mM malate, 15 mM glutamate, 2.5 mM ADP, 10 μM cytochrome c, 10 mM succinate, 2.5 μM oligomycin, 1.5 μM FCCP, 3.5 μM rotenone, 4 μM antimycin and 1 mM KCN or 100 mM Sodium Azide. We found a linear dependency of oxygen consumption on oxygen concentration. This technique requires < 20 mg of myocardium and the preparation of the sample takes <20 min. Mitochondria in the homogenate, as compared to subsarcolemmal and interfibrillar isolated mitochondria, have comparable or better preserved integrity of outer mitochondrial membrane (increase of respiration after addition of cytochrome c is up to 11.7±1.8% vs. 15.7±3.1%, p˂0.05 and 11.7±3.5%, p = 0.99, resp.) and better efficiency of oxidative phosphorylation (Respiratory Control Ratio = 3.65±0.5 vs. 3.04±0.27, p˂0.01 and 2.65±0.17, p˂0.0001, resp.). Results are reproducible with coefficient of variation between two duplicate measurements ≤8% for all indices. We found that whereas atrial myocardium contains less mitochondria than the ventricle, atrial bioenergetic profiles are comparable to left ventricle. In conclusion, high resolution respirometry has been adapted to homogenates of human cardiac muscle and shown to be reliable and reproducible.
Zobrazit více v PubMed
Gibbs CL. Cardiac energetics. Physiol Rev. 1978;58: 174–254. 10.1152/physrev.1978.58.1.174 PubMed DOI
Suga H. Ventricular energetics. Physiol Rev. 1990;70: 247–77. 10.1152/physrev.1990.70.2.247 PubMed DOI
Lopaschuk G, Naranjan S. Cardiac Energy Metabolism in Health and Disease. Springer; 10.1007/978-1-4939-1227-8 2014. DOI
Doenst T, Nguyen T, Abel E. Cardiac Metabolism in Heart Failure—Implications beyond ATP production. Circ Res. 2013;113: 709–724. 10.1161/CIRCRESAHA.113.300376 PubMed DOI PMC
Neubauer S. The Failing Heart—An Engine Out of Fuel. N Engl J Med. 2007;356: 1140–51. 10.1056/NEJMra063052 PubMed DOI
Varikmaa M, Guzun R, Grichine A, Gonzalez-Granillo M, Usson Y, Boucher F, et al. Matters of the heart in bioenergetics: Mitochondrial fusion into continuous reticulum is not needed for maximal respiratory activity. J Bioenerg Biomembr. 2013;45: 319–331. 10.1007/s10863-012-9494-4 PubMed DOI
Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure. Cardiovasc Res. 2011;90: 202–209. 10.1093/cvr/cvr038 PubMed DOI PMC
Quigley A, Kapsa R, Esmore D, Hale G, Byrne E. Mitochondrial respiratory chain activity in idiopathic dilated cardiomyopathy. J Card Fail. 2000;6: 47–55. 10.1016/s1071-9164(00)00011-7 PubMed DOI
Jarreta D, Orús J, Barrientos A, Miró O, Roig E, Heras M, et al. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc Res. 2000;45: 860–865. 10.1016/s0008-6363(99)00388-0 PubMed DOI
Tocchi A, Quarles EK, Basisty N, Gitari L, Rabinovitch PS. Mitochondrial dysfunction in cardiac aging. Biochim Biophys Acta. Elsevier B.V.; 2015;1847: 1424–1433. 10.1016/j.bbabio.2015.07.009 PubMed DOI PMC
Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Hear Circ Physiol. 2015;309: 1453–1467. 10.1152/ajpheart.00554.2015 PubMed DOI PMC
Lemieux H, Hoppel C. Mitochondria in the human heart. J Bioenerg Biomembr. 2009;41: 99–106. 10.1007/s10863-009-9211-0 PubMed DOI
Lanza IR, Nair KS. Functional Assessment of Isolated Mitochondria In Vitro. Methods Enzym. 2009;457: 349–372. 10.1016/s0076-6879(09)05020-4 PubMed DOI PMC
Figueiredo P, Ferreira R, Appell H, Duarte J. Age-induced morphological, biochemical, and functional alterations in isolated mitochondria from murine skeletal muscle. J Gerontol A Biol Sci Med Sci. 2008;63: 350–359. 10.1093/gerona/63.4.350 PubMed DOI
Rasmussen U, Krustrup P, Kjaer M, Rasmussen H. Experimental evidence against the mitochondrial theory of aging. A study of isolated human skeletal muscle mitochondria. Exp Gerontol. 2003;38: 877–886. 10.1016/s0531-5565(03)00092-5 PubMed DOI
Saks V, Veksler V, Kuznetsov A, Kay L, Sikk P, Tiivel T, et al. Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem. 1998;184: 81–100. 10.1007/978-1-4615-5653-4_7 PubMed DOI
Kuznetsov AV., Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc. 2008;3: 965–976. 10.1038/nprot.2008.61 PubMed DOI
Cardinale DA, Gejl KD, Ørtenblad N, Ekblom B, Blomstrand E, Larsen FJ. Reliability of maximal mitochondrial oxidative phosphorylation in permeabilized fibers from the vastus lateralis employing high-resolution respirometry. Physiol Rep. 2018;6: e13611 10.14814/phy2.13611 PubMed DOI PMC
Pecinová A, Drahota Z, Nůsková H, Pecina P, Houštěk J. Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion. 2011;11: 722–8. 10.1016/j.mito.2011.05.006 PubMed DOI
Ziak J, Krajcova A, Jiroutkova K, Nemcova V, Dzupa V, Duska F. Assessing the function of mitochondria in cytosolic context in human skeletal muscle: Adopting high-resolution respirometry to homogenate of needle biopsy tissue samples. Mitochondrion. Elsevier; 2015;21: 106–112. 10.1016/j.mito.2015.02.002 PubMed DOI
Pesta D, Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol. 2012;810: 25–58. 10.1007/978-1-61779-382-0_3 PubMed DOI
Gnaiger E, Kuznetsov A V, Schneeberger S, Seiler Rü, Brandacher G, Steurer W, et al. Mitochondria in the Cold In: Heldmaier G, Klingenspor M (eds) Life in the Cold, 1st edn Springer, Berlin, Heidelberg: 2000. s. 431–442. 10.1007/978-3-662-04162-8_45 DOI
Gnaiger E. Polarographic Oxygen Sensors, the Oxygraph, and High-Resolution Respirometry to Assess Mitochondrial Function In: Dykens JA, Will Y (eds) Drug-Induced Mitochondrial Dysfunction, 1st edn John Wiley & Sons, Inc; 2008. s. 325–352. 10.1002/9780470372531.ch12 DOI
Ruas JS, Siqueira-Santos ES, Amigo I, Rodrigues-Silva E, Kowaltowski AJ, Castilho RF. Underestimation of the maximal capacity of the mitochondrial electron transport system in oligomycin-treated cells. PLoS One. 2016;11: 1–20. 10.1371/journal.pone.0150967 PubMed DOI PMC
Wikström M, Casey R. The oxidation of exogenous cytochrome c by mitochondria. Resolution of a long-standing controversy. FEBS Lett. 1985;183: 293–298. 10.1016/0014-5793(85)80796-1 PubMed DOI
Perry CGR, Kane DA, Lanza IR, Neufer PD. Methods for assessing mitochondrial function in diabetes. Diabetes. 2013;62: 1041–1053. 10.2337/db12-1219 PubMed DOI PMC
Larsen S, Kraunsøe R, Gram M, Gnaiger E, Helge J, Dela F. The best approach: homogenization or manual permeabilization of human skeletal muscle fibers for respirometry? Anal Biochem. 2014;1: 64–8. 10.1016/j.ab.2013.10.023 PubMed DOI
Palmer J, Tandler B, Hoppel C. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977;252: 8731–9. PubMed
Picard M, Taivassalo T, Gouspillou G, Hepple RT. Mitochondria: isolation, structure and function. J Physiol. 2011;589: 4413–4421. 10.1113/jphysiol.2011.212712 PubMed DOI PMC
Srere PA. Citrate Synthase. Methods Enzym. 1969;13: 3–11. 10.1016/0076-6879(69)13005-0 DOI
Kuznetsov AV, Kunz WS, Saks V, Usson Y. Cryopreservation of mitochondria and mitochondrial function in cardiac and skeletal muscle fibers. Anal Biochem. 2003;2697 10.1016/S0003-2697(03)00326-9 PubMed DOI
Toleikis A, Dzeja P, Praskevicius A, Jasaitis A. Mitochondrial functions in ischemic myocardium. I. Proton electrochemical gradient, inner membrane permeability, calcium transport and oxidative phosphorylation in isolated mitochondria. J Mol Cell Cardiol. 1979;11: 57–76. 10.1016/0022-2828(79)90452-8 PubMed DOI
Chance B, Hagihara B. Activation and inhibition of succinate oxidation following adenosine diphosphate supplements to pigeon heart mitochondria. J Biol Chem. 1962;237: 3540–3545. 10.1016/0006-291x(60)90091-7 PubMed DOI
Chidsey CA, Weinbach EC, Pool PE, Morrow AG. Biochemical studies of energy production in the failing human heart. J Clin Invest. 1966;45: 40–50. 10.1172/JCI105322 PubMed DOI PMC
Mela L, Seitz S. Isolation of Mitochondria with Emphasis on Heart Mitochondria from Small Amounts of Tissue. Methods Enzym. 1979;55: 39–46. 10.1016/0076-6879(79)55006-x PubMed DOI
Chappell JB. The Oxidation of Citrate, Isocitrate and cis-Aconitate by Isolated Mitochondria. Biochem J. 1964;90: 225–237. 10.1042/bj0900225 PubMed DOI PMC
Scheubel RJ, Tostlebe M, Simm A, Rohrbach S, Prondzinsky R, Gellerich FN, et al. Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J Am Coll Cardiol. Elsevier Masson SAS; 2002;40: 2174–2181. 10.1016/S0735-1097(02)02600-1 PubMed DOI
Wilson M, Cascarano J, Wooten W, Pickett C. Quantitative isolation of liver mitochondria by zonal centrifugation. Anal Biochem. 1978;85: 255–64. 10.1016/0003-2697(78)90297-x PubMed DOI
Tonkonogi M, Fernström M, Walsh B, Ji L, Rooyackers O Hammarqvist F Wernerman J, Sahlin K. Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans. Pflugers Arch. 2003;446: 261–9. 10.1007/s00424-003-1044-9 PubMed DOI
Krieger D, Tate C, McMillin-Wood J, Booth F. Populations of rat skeletal muscle mitochondria after exercise and immobilization. J Appl Physiol. 1980;48: 23–8. 10.1152/jappl.1980.48.1.23 PubMed DOI
Picard M, Taivassalo T, Ritchie D, Wright KJ, Thomas MM, Romestaing C, et al. Mitochondrial structure and function are disrupted by standard Isolation methods. PLoS One. 2011;6: 1–12. 10.1371/journal.pone.0018317 PubMed DOI PMC
Saks V, Guzun R, Timohhina N, Tepp K, Varikmaa M, Monge C, et al. Structure-function relationships in feedback regulation of energy fluxes in vivo in health and disease: Mitochondrial Interactosome. Biochim Biophys Acta. Elsevier B.V.; 2010;1797: 678–697. 10.1016/j.bbabio.2010.01.011 PubMed DOI
Veksler V, Kuznetsov A, Sharov V, Kapelko V, Saks V. Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta. 1987;892: 191–6. 10.1016/0005-2728(87)90174-5 PubMed DOI
Mathers KE, Staples JF. Saponin-permeabilization is not a viable alternative to isolated mitochondria for assessing oxidative metabolism in hibernation. Biol Open. 2015;4: 858–864. 10.1242/bio.011544 PubMed DOI PMC
From AM, Maleszewski JJ, Rihal CS. Current status of endomyocardial biopsy. Mayo Clin Proc. 2011;86: 1095–1102. 10.4065/mcp.2011.0296 PubMed DOI PMC
Murphy J, Frantz R, Cooper L. Endomyocardial biopsy In: Murphy J, Lloyd M (eds). Mayo Clinic Cardiology: Concise Textbook, 3rd edn Mayo Clinic Scientific Press, pp 1481–1487.
Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E. Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol. 2011;43: 1729–38. 10.1016/j.biocel.2011.08.008 PubMed DOI
Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsøe R, Dela F. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia. 2007;50: 790–796. 10.1007/s00125-007-0594-3 PubMed DOI PMC
Perry CGR, Kane DA, Lin C, Kozy R, Brook L, Lark DS, et al. Inhibiting Myosin-ATPase Reveals Dynamic Range of Mitochondrial Respiratory Control in Skeletal Muscle. Biochem J. 2013;437 10.1042/BJ20110366 PubMed DOI PMC