Making Sense of Complex Carbon and Metal/Carbon Systems by Secondary Electron Hyperspectral Imaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31592411
PubMed Central
PMC6774015
DOI
10.1002/advs.201900719
PII: ADVS1297
Knihovny.cz E-zdroje
- Klíčová slova
- carbon orientations, carbon surface analysis, characterization, modeling, secondary electron emission, secondary electron hyperspectral imaging, secondary electron spectroscopy,
- Publikační typ
- časopisecké články MeSH
Carbon and carbon/metal systems with a multitude of functionalities are ubiquitous in new technologies but understanding on the nanoscale remains elusive due to their affinity for interaction with their environment and limitations in available characterization techniques. This paper introduces a spectroscopic technique and demonstrates its capacity to reveal chemical variations of carbon. The effectiveness of this approach is validated experimentally through spatially averaging spectroscopic techniques and using Monte Carlo modeling. Characteristic spectra shapes and peak positions for varying contributions of sp2-like or sp3-like bond types and amorphous hydrogenated carbon are reported under circumstances which might be observed on highly oriented pyrolytic graphite (HOPG) surfaces as a result of air or electron beam exposure. The spectral features identified above are then used to identify the different forms of carbon present within the metallic films deposited from reactive organometallic inks. While spectra for metals is obtained in dedicated surface science instrumentation, the complex relations between carbon and metal species is only revealed by secondary electron (SE) spectroscopy and SE hyperspectral imaging obtained in a state-of-the-art scanning electron microscope (SEM). This work reveals the inhomogeneous incorporation of carbon on the nanoscale but also uncovers a link between local orientation of metallic components and carbon form.
European Centre for Theoretical Studies in Nuclear Physics and Related Areas Trento 38123 Italy
Institute of Scientific Instruments of the CAS Královopolská 147 612 64 Brno Czech Republic
Leibniz Institute for Plasma Science and Technology Felix Hausdorff Str 2 17489 Greifswald Germany
School of Engineering University of Liverpool Harrison Hughes Building Liverpool L69 3GH UK
Trento Institute for Fundamental Physics and Applications Povo Trento 38123 Italy
Zobrazit více v PubMed
Strauss V., Roth A., Sekita M., Guldi D. M., Chem 2016, 1, 531.
Yu X., Tang Z., Sun D., Ouyang L., Zhu M., Prog. Mater. Sci. 2017, 88, 1.
Cartwright R. J., Esconjauregui S., Weatherup R. S., Hardeman D., Guo Y., Wright E., Oakes D., Hofmann S., Robertson J., Carbon 2014, 75, 327.
Luo W., Wang C., Lacey S. D., Dai J., Chen Y., Mo Y., Wachsman E., Hu L., Sci. Adv. 2017, 3, e1601659. PubMed PMC
Kasemchainan J., Bruce P. G., Johnson Matthey Technol. Rev. 2018, 62, 177.
Dou X., Hasa I., Saurel D., Vaalma C., Wu L., Buchholz D., Bresser D., Komaba S., Passerini S., Mater. Today 2019, 23, 87.
Ferrari A. C., Robertson J., Phys. Rev. B 2000, 61, 14095.
Chen C., Wang C., Diao D., Appl. Phys. Lett. 2016, 109, 053104.
Zhao Z., Das S., Xing G., Fayon P., Heasman P., Jay M., Bailey S., Lambert C., Yamada H., Wakihara T., Trewin A., Ben T., Qiu S., Valtchev V., Angew. Chem., Int. Ed. Engl. 2018, 57, 11952. PubMed
Zhang G., Cuharuc A. S., Güell A. G., Unwin P. R., Phys. Chem. Chem. Phys. 2015, 17, 11827. PubMed
Ferrari A. C., Katsnelson M., Vandersypen L., Loiseau A., Morandi V., Tredicucci A., Williams G. M., Hong H., Nanoscale 2015, 7, 4598.
Chu P. K., Li L., Mater. Chem. Phys. 2006, 96, 253.
Muhammad Salim M., Hurst Justin, Montgomery H. L., Tolman Nathan, J. Electron Spectros. Relat. Phenom. 2019, 235, 8.
Masters R. C., Pearson A. J., Glen T. S., Sasam F. C., Li L., Dapor M., Donald A. M., Lidzey D. G., Rodenburg C., Nat. Commun. 2015, 6, 1. PubMed PMC
Dapor M., Jepson M. A. E., Inkson B. J., Rodenburg C., J. Phys.: Conf. Series 2010, 241, 012076.
Abrams K. J., Wan Q., Stehling N. A., Jiao C., Talari A. C. S. S., Rehman I., Rodenburg C., Phys. Status Solidi C 2017, 14, 1.
Masters R. C., Stehling N., Abrams K. J., Kumar V., Azzolini M., Pugno N. M., Dapor M., Huber A., Schäfer P., Lidzey D. G., Rodenburg C., Adv. Sci. 2019, 6, 1801752. PubMed PMC
Kumar V., Schmidt W. L., Schileo G., Masters R. C., Wong‐stringer M., Sinclair D. C., Reaney I. M., Lidzey D., Rodenburg C., ACS Omega 2017, 2, 2126. PubMed PMC
Wan Q., Abrams K. J., Masters R. C., Talari A. C. S. S., Rehman I. U., Claeyssens F., Holland C., Rodenburg C., Adv. Mater. 2017, 29, 1. PubMed
Stehling N., Masters R., Zhou Y., O'Connell R., Holland C., Zhang H., Rodenburg C., MRS Commun. 2018, 8, 226.
Willis R. F., Fitton B., J. Vac. Sci. Technol., A 1972, 9, 651.
Hoffman A., Diamond Relat. Mater. 1994, 3, 691.
Wan Q., Masters R. C. C., Lidzey D., Abrams K. J. J., Dapor M., Plenderleith R. A. A., Rimmer S., Claeyssens F., Rodenburg C., Ultramicroscopy 2016, 171, 126. PubMed
Masters R. C., Wan Q., Zhang Y., Dapor M., Sandu A. M., Jiao C., Zhou Y., Zhang H., Lidzey D. G., Rodenburg C., Sol. Energy Mater. Sol. Cells 2017, 160, 182.
Feddes B., Kravchenko I., Seiberling L., Scanning 1998, 20, 376.
Li Z., Wang Y., Kozbial A., Shenoy G., Zhou F., McGinley R., Ireland P., Morganstein B., Kunkel A., Surwade S. P., Li L., Liu H., Nat. Mater. 2013, 12, 925. PubMed
Luo Z., Yu T., Kim K., Ni Z., You Y., Lim S., Shen Z., Wang S., Lin J., ACS Nano 2009, 3, 1781. PubMed
Bargeron C. B.,
Martinez‐Martin D., Longuinhos R., Izquierdo J. G., Marele A., Simone S., Alexandre S. S., Jaafar M., Gómez‐Rodríguez J. M., Bañares L., Soler J. M., Gomez‐Herrero J., Carbon 2013, 61, 33.
Lu Y., Muñoz M., Steplecaru C. S., Hao C., Bai M., Garcia N., Schindler K., Esquinazi P., Phys. Rev. Lett. 2006, 97, 1. PubMed
Seiler H., J. Appl. Phys. 1983, 54, R1.
Ding W., Dikin D. A., Chen X., Piner R. D., Ruoff R. S., Zussman E., Wang X., Li X., J. Appl. Phys. 2005, 98, 1.
Amman M., Sleight J. W., Lombardi D. R., Welser R. E., Deshpande M. R., Reed M. A., Guido L. J., J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 1996, 14, 54.
Rykaczewski K., Marshall A., White W. B., Fedorov A. G., Ultramicroscopy 2008, 108, 989. PubMed
Burbridge D. J., Crampin S., Viau G., Gordeev S. N., Nanotechnology 2008, 19, 1. PubMed
Hirsch L., Kassens P, Reimer M, Scanning 1994, 16, 101.
Ripalda J. M., Montero I., Vázquez L., Raboso D., Galán L., J. Appl. Phys. 2006, 99, 043513.
Wu S., Yang R., Shi D., Zhang G., Nanoscale 2012, 4, 2005. PubMed
Nikitin A., Näslund L. Å., Zhang Z., Nilsson A., Surf. Sci. 2008, 602, 2575.
Ruffieux P., Gröning O., Schwaller P., Schlapbach L., Gröning P., Phys. Rev. Lett. 2000, 84, 4910. PubMed
Duch J., Kubisiak P., Adolfsson K. H., Hakkarainen M., Golda‐cepa M., Kotarba A., Appl. Surf. Sci. 2017, 419, 439.
Hoffman A., Prawer S., Folman M., Appl. Phys. Lett. 1991, 58, 361. PubMed
Lesiak B., Kövér L., Tóth J., Zemek J., Jiricek P., Kromka A., Rangam N., Appl. Surf. Sci. 2018, 452, 223.
Zemek J., Houdkova J., Jiricek P., Jelinek M., Carbon 2018, 134, 71.
Black K., Singh J., Mehta D., Sung S., Sutcliffe C. J., Chalker P. R., Sci. Rep. 2016, 6, 20814. PubMed PMC
Novolodski V. A., Artamonov O. M., Komolov S. A., Tech. Phys. 1999, 44, 6.
Otto A., Reihl A., Phys. Rev. B 1990, 41, 9752. PubMed