Effect of Graphite Aging on Its Wetting Properties and Surface Blocking by Gaseous Nanodomains
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37734043
PubMed Central
PMC10552534
DOI
10.1021/acs.langmuir.3c02151
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Early works considered basal planes of highly ordered pyrolytic graphite (HOPG) as hydrophobic, relatively inert materials with low electrocatalytic activity due to nonpolar sp2 carbon. On the contrary, a freshly prepared HOPG surface exhibits intrinsically mildly hydrophilic properties, with a low contact angle of water, which increases after exposure to an ambient atmosphere. This process, called aging, ascribed to adsorption of airborne hydrocarbons, is reportedly accompanied by strong decay of electron transfer kinetics, the mechanism of which is not yet fully understood. Examining both freshly prepared and aged basal plane HOPG immersed in water by PeakForce quantitative nanomechanical imaging, we have found that aged HOPG is occupied by ambient gaseous nanodomains, the existence of which is explained by incomplete wetting. They cover up to 60% of the immersed surface and their incidence is in direct relation with graphite aging time. In contrast with aged graphite, gaseous nanodomains were absent on the freshly stripped HOPG surface. It can be concluded that ambient gaseous nanodomains can prevent aged basal plane HOPG from contact with aqueous media and may thus affect processes at the solid-liquid interface.
Zobrazit více v PubMed
Li Y. F.; Guo M. Q.; Yin S. F.; Chen L.; Zhou Y. B.; Qiu R. H.; Au C. T. Graphite as a Highly Efficient and Stable Catalyst for the Production of Lactones. Carbon N. Y. 2013, 55, 269–275. 10.1016/j.carbon.2012.12.036. DOI
Patel A. N.; Collignon M. G.; O’Connell M. A.; Hung W. O. Y.; McKelvey K.; Macpherson J. V.; Unwin P. R. A New View of Electrochemistry at Highly Oriented Pyrolytic Graphite. J. Am. Chem. Soc. 2012, 134 (49), 20117–20130. 10.1021/ja308615h. PubMed DOI
Chang Y. H.; Olukan T.; Lai C. Y.; Marbou K.; Apostoleris H. N.; Ghaferi A. A.; Chiesa M. Divergent Surface Properties of Multidimensional Sp 2 Carbon Allotropes: The Effect of Aging Phenomena. Nanotechnology 2016, 27 (29), 295701 10.1088/0957-4484/27/29/295701. PubMed DOI
Kozbial A.; Li Z.; Sun J.; Gong X.; Zhou F.; Wang Y.; Xu H.; Liu H.; Li L. Understanding the Intrinsic Water Wettability of Graphite. Carbon N. Y. 2014, 74, 218–225. 10.1016/j.carbon.2014.03.025. DOI
Amadei C. A.; Lai C. Y.; Heskes D.; Chiesa M. Time Dependent Wettability of Graphite upon Ambient Exposure: The Role of Water Adsorption. J. Chem. Phys. 2014, 141 (8), 084709 10.1063/1.4893711. PubMed DOI
Kozbial A.; Zhou F.; Li Z.; Liu H.; Li L. Are Graphitic Surfaces Hydrophobic?. Acc. Chem. Res. 2016, 49 (12), 2765–2773. 10.1021/acs.accounts.6b00447. PubMed DOI
Wei Y.; Jia C. Q. Intrinsic Wettability of Graphitic Carbon. Carbon N. Y. 2015, 87 (C), 10–17. 10.1016/j.carbon.2015.02.019. DOI
Li Z.; Wang Y.; Kozbial A.; Shenoy G.; Zhou F.; McGinley R.; Ireland P.; Morganstein B.; Kunkel A.; Surwade S. P. Effect of Airborne Contaminants on the Wettability of Supported Graphene and Graphite. Nat. Mater. 2013, 12 (10), 925–931. 10.1038/nmat3709. PubMed DOI
Zou Y.; Walton A. S.; Kinloch I. A.; Dryfe R. A. W. Investigation of the Differential Capacitance of Highly Ordered Pyrolytic Graphite as a Model Material of Graphene. Langmuir 2016, 32 (44), 11448–11455. 10.1021/acs.langmuir.6b02910. PubMed DOI
Abrams K. J.; Dapor M.; Stehling N.; Azzolini M.; Kyle S. J.; Schäfer J.; Quade A.; Mika F.; Kratky S.; Pokorna Z.; Konvalina I.; Mehta D.; Black K.; Rodenburg C.; et al. Making Sense of Complex Carbon and Metal/Carbon Systems by Secondary Electron Hyperspectral Imaging. Adv. Sci. 2019, 6 (19), 1900719. 10.1002/advs.201900719. PubMed DOI PMC
Dammer S. M.; Lohse D. Gas Enrichment at Liquid-Wall Interfaces. Phys. Rev. Lett. 2006, 96 (20), 10–14. 10.1103/PhysRevLett.96.206101. PubMed DOI
Blake T. D. The Physics of Moving Wetting Lines. J. Colloid Interface Sci. 2006, 299 (1), 1–13. 10.1016/j.jcis.2006.03.051. PubMed DOI
Wastl D. S.; Speck F.; Wutscher E.; Ostler M.; Seyller T.; Giessibl F. J. Observation of 4 Nm Pitch Stripe Domains Formed by Exposing Graphene to Ambient Air. ACS Nano 2013, 7 (11), 10032–10037. 10.1021/nn403988y. PubMed DOI
Lu Y. H.; Yang C. W.; Hwang I. S. Molecular Layer of Gaslike Domains at a Hydrophobic Water Interface Observed by Frequency-Modulation Atomic Force Microscopy. Langmuir 2012, 28 (35), 12691–12695. 10.1021/la301671a. PubMed DOI
Janda P.; Frank O.; Bastl Z.; Klementová M.; Tarábková H.; Kavan L. Nanobubble-Assisted Formation of Carbon Nanostructures on Basal Plane Highly Ordered Pyrolytic Graphite Exposed to Aqueous Media. Nanotechnology 2010, 21 (9), 095707 10.1088/0957-4484/21/9/095707. PubMed DOI
Nioradze N.; Chen R.; Kurapati N.; Khvataeva-Domanov A.; Mabic S.; Amemiya S. Organic Contamination of Highly Oriented Pyrolytic Graphite as Studied by Scanning Electrochemical Microscopy. Anal. Chem. 2015, 87 (9), 4836–4843. 10.1021/acs.analchem.5b00213. PubMed DOI
Velický M.; Bradley D. F.; Cooper A. J.; Hill E. W.; Kinloch I. A.; Mishchenko A.; Novoselov K. S.; Patten H. V.; Toth P. S.; Valota A. T.; et al. Electron Transfer Kinetics on Mono- and Multilayer Graphene. ACS Nano 2014, 8 (10), 10089–10100. 10.1021/nn504298r. PubMed DOI
Zhang G.; Tan S.; Patel A. N.; Unwin P. R. Electrochemistry of Fe 3+/2+ at Highly Oriented Pyrolytic Graphite (HOPG) Electrodes: Kinetics, Identification of Major Electroactive Sites and Time Effects on the Response. Phys. Chem. Chem. Phys. 2016, 18 (47), 32387–32395. 10.1039/C6CP06472H. PubMed DOI
Dutta G.; Yang H. Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles. J. Electrochem. Sci. Technol 2016, 7 (1), 27–32. 10.33961/JECST.2016.7.1.1. DOI
Hu K.; Luo L.; Sun X.; Li H. Unraveling the Effects of Gas Species and Surface Wettability on the Morphology of Interfacial Nanobubbles. Nanoscale Adv. 2022, 4, 2893–2901. 10.1039/D2NA00009A. PubMed DOI PMC
Kolivoška V.; Gál M.; Hromadová M.; Lachmanová Š.; Tarábková H.; Janda P.; Pospíšil L.; Turoňová A. M. Bovine Serum Albumin Film as a Template for Controlled Nanopancake and Nanobubble Formation: In Situ Atomic Force Microscopy and Nanolithography Study. Colloids Surfaces B Biointerfaces 2012, 94, 213–219. 10.1016/j.colsurfb.2012.01.028. PubMed DOI
Wu Z. H.; Chen H. B.; Dong Y. M.; Mao H. L.; Sun J. L.; Chen S. F.; Craig V. S. J.; Hu J. Cleaning Using Nanobubbles: Defouling by Electrochemical Generation of Bubbles. J. Colloid Interface Sci. 2008, 328 (1), 10–14. 10.1016/j.jcis.2008.08.064. PubMed DOI
Zhao B.; Wang X.; Song Y.; Hu J.; Lü J.; Zhou X.; Tai R.; Zhang X.; Zhang L. Stiffness and Evolution of Interfacial Micropancakes Revealed by AFM Quantitative Nanomechanical Imaging. Phys. Chem. Chem. Phys. 2015, 17 (20), 13598–13605. 10.1039/C5CP01366F. PubMed DOI
Yang S.; Kooij E. S.; Poelsema B.; Lohse D.; Zandvliet H. J. W. Correlation between Geometry and Nanobubble Distribution on HOPG Surface. EPL Europhysics Lett. 2008, 81 (6), 64006. 10.1209/0295-5075/81/64006. DOI
Tarábková H.; Bastl Z.; Janda P. Surface Rearrangement of Water-Immersed Hydrophobic Solids by Gaseous Nanobubbles. Langmuir 2014, 30 (48), 14522–14531. 10.1021/la503157s. PubMed DOI
Zhang X. H.; Li G.; Maeda N.; Hu J. Removal of Induced Nanobubbles from Water/Graphite Interfaces by Partial Degassing. Langmuir 2006, 22 (22), 9238–9243. 10.1021/la061432b. PubMed DOI
Yang S.; Tsai P.; Kooij E. S.; Prosperetti A.; Zandvliet H. J. W.; Lohse D. Electrolytically Generated Nanobubbles on Highly Orientated Pyrolytic Graphite Surfaces. Langmuir 2009, 25 (3), 1466–1474. 10.1021/la8027513. PubMed DOI
Dollet B.; Lohse D. Pinning Stabilizes Neighboring Surface Nanobubbles against Ostwald Ripening. Langmuir 2016, 32 (43), 11335–11339. 10.1021/acs.langmuir.6b02136. PubMed DOI
Zhang X. H.; Zhang X.; Sun J.; Zhang Z.; Li G.; Fang H.; Xiao X.; Zeng X.; Hu J. Detection of Novel Gaseous States at the Highly Oriented Pyrolytic Graphite-Water Interface. Langmuir 2007, 23 (4), 1778–1783. 10.1021/la062278w. PubMed DOI
Fang H.; Geng Z.; Guan N.; Zhou L.; Zhang L.; Hu J. Controllable Generation of Interfacial Gas Structures on the Graphite Surface by Substrate Hydrophobicity and Gas Oversaturation in Water. Soft Matter 2022, 20 (7), 8251–8261. 10.1039/D2SM00849A. PubMed DOI
Teshima H.; Takahashi K.; Takata Y.; Nishiyama T. Wettability of AFM Tip Influences the Profile of Interfacial Nanobubbles. J. Appl. Physics 2018, 123 (5), 054303 10.1063/1.5010131. DOI
An H.; Tan B. H.; Ohl C. D. Distinguishing Nanobubbles from Nanodroplets with AFM: The Influence of Vertical and Lateral Imaging Forces. Langmuir 2016, 32 (48), 12710–12715. 10.1021/acs.langmuir.6b02519. PubMed DOI
Lohse D.; Zhang X. Pinning and Gas Oversaturation Imply Stable Single Surface Nanobubbles. Phys. Rev. E 2015, 91 (3), 031003 10.1103/PhysRevE.91.031003. PubMed DOI
Liu Y.; Bernardi S.; Widmer-Cooper A. Stability of Pinned Surface Nanobubbles against Expansion: Insights from Theory and Simulation. J. Chem. Phys. 2020, 153 (2), 024704 10.1063/5.0013223. PubMed DOI
Melcher J.; Carrasco C.; Xu X.; Carrascosa J. L.; Gómez-Herrero J.; José de Pablo P.; Raman A. Origins of Phase Contrast in the Atomic Force Microscope in Liquids. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (33), 13655–13660. 10.1073/pnas.0902240106. PubMed DOI PMC
McHale G.; Newton M. I.; Shirtcliffe N. J. Immersed Superhydrophobic Surfaces: Gas Exchange, Slip and Drag Reduction Properties. Soft Matter 2010, 6 (4), 714–719. 10.1039/B917861A. DOI
Simonsen A. C.; Hansen P. L.; Klösgen B. Nanobubbles Give Evidence of Incomplete Wetting at a Hydrophobic Interface. J. Colloid Interface Sci. 2004, 273 (1), 291–299. 10.1016/j.jcis.2003.12.035. PubMed DOI
Fang C. K.; Ko H. C.; Yang C. W.; Lu Y. H.; Hwang I. S. Nucleation Processes of Nanobubbles at a Solid/Water Interface. Sci. Rep. 2016, 6 (1), 24651–10. 10.1038/srep24651. PubMed DOI PMC
Tuziuti T.; Yasui K.; Kanematsu W. Influence of Addition of Degassed Water on Bulk Nanobubbles. Ultrasonics Sonochem. 2018, 43 (January), 272–274. 10.1016/j.ultsonch.2018.01.015. PubMed DOI
Li M.; Ma X.; Eisener J.; Pfeiffer P.; Ohl C. D.; Sun C. How Bulk Nanobubbles Are Stable over a Wide Range of Temperatures. J. Colloid Interface Sci. 2021, 596, 184–198. 10.1016/j.jcis.2021.03.064. PubMed DOI
Lee J. I.; Huh H. S.; Park J. Y.; Han J. G.; Kim J. M. Coarsening Behavior of Bulk Nanobubbles in Water. Sci. Rep. 2021, 11 (1), 1–8. 10.1038/s41598-021-98783-2. PubMed DOI PMC
Hurst J. M.; Li L.; Liu H. Adventitious Hydrocarbons and the Graphite-Water Interface. Carbon N. Y. 2018, 134, 464–469. 10.1016/j.carbon.2018.04.020. DOI
Li Z.; Kozbial A.; Nioradze N.; Parobek D.; Shenoy G. J.; Salim M.; Amemiya S.; Li L.; Liu H. Water Protects Graphitic Surface from Airborne Hydrocarbon Contamination. ACS Nano 2016, 10 (1), 349–359. 10.1021/acsnano.5b04843. PubMed DOI
Lu Y. H.; Yang C. W.; Fang C. K.; Ko H. C.; Hwang I. S. Interface-Induced Ordering of Gas Molecules Confined in a Small Space. Sci. Rep. 2014, 4 (1), 7189. 10.1038/srep07189. PubMed DOI PMC
Yang C. W.; Lu Y. H.; Hwang I. S. Imaging Surface Nanobubbles at Graphite-Water Interfaces with Different Atomic Force Microscopy Modes. J. Phys.: Condens. Matter 2013, 25 (18), 184010 10.1088/0953-8984/25/18/184010. PubMed DOI
Peng H.; Birkett G. R.; Nguyen A. V. Origin of Interfacial Nanoscopic Gaseous Domains and Formation of Dense Gas Layer at Hydrophobic Solid-Water Interface. Langmuir 2013, 29 (49), 15266–15274. 10.1021/la403187p. PubMed DOI
Peng H.; Hampton M. A.; Nguyen A. V. Nanobubbles Do Not Sit Alone at the Solid-Liquid Interface. Langmuir 2013, 29 (20), 6123–6130. 10.1021/la305138v. PubMed DOI
Bard A. J.; Faulkner L. R.. ELECTROCHEMICAL METHODS Fundamentals and Applications, 2nd.; John Willey: New York, 2001. 10.1016/B978-0-12-381373-2.00056-9. DOI
Lemay S. G. Noise as Data: Nucleation of Electrochemically Generated Nanobubbles. ACS Nano 2019, 13 (6), 6141–6144. 10.1021/acsnano.9b03348. PubMed DOI PMC
Spuller M. T.; Hess D. W. Incomplete Wetting of Nanoscale Thin-Film Structures. J. Electrochem. Soc. 2003, 150 (8), G476–G480. 10.1149/1.1588303. DOI