Genetic diversity and structure of baobab (Adansonia digitata L.) in southeastern Kenya
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31598309
PubMed Central
PMC6774979
DOI
10.1098/rsos.190854
PII: rsos190854
Knihovny.cz E-zdroje
- Klíčová slova
- conservation, gene flow, genetic differentiation, microsatellites (SSR), tetraploid,
- Publikační typ
- časopisecké články MeSH
Baobab (Adansonia digitata L.) is an iconic tree of African savannahs. Its multipurpose character and nutritional composition of fruits and leaves offer high economic and social potential for local communities. There is an urgent need to characterize the genetic diversity of the Kenyan baobab populations in order to facilitate further conservation and domestication programmes. This study aims at documenting the genetic diversity and structure of baobab populations in southeastern Kenya. Leaf or bark samples were collected from 189 baobab trees in seven populations distributed in two geographical groups, i.e. four inland and three coastal populations. Nine microsatellite loci were used to assess genetic diversity. Overall, genetic diversity of the species was high and similarly distributed over the populations. Bayesian clustering and principal coordinate analysis congruently divided the populations into two distinct clusters, suggesting significant differences between inland and coastal populations. The genetic differentiation between coastal and inland populations suggests a limited possibility of gene flow between these populations. Further conservation and domestications studies should take into consideration thegeographical origin of trees and more attention should be paid to morphological characterization of fruits and leaves of the coastal and inland populations to understand the causes and the impact of the differentiation.
Department of Crop Sciences and Agroforestry Faculty of Tropical AgriSciences and
Department of Plants and Crops Faculty of Bioscience Engineering Ghent University 9000 Ghent Belgium
Rhine Waal University of Applied Sciences Marie Curie Straße 1 47533 Kleve Germany
The Czech Academy of Sciences Institute of Botany Zámek 1 252 43 Průhonice Czech Republic
Zobrazit více v PubMed
Sidibe M, Williams JT. 2002. Adansonia digitata BAOBAB L. Southampton, UK: International Center for Underutilised Crops.
Wiehle M, Prinz K, Kehlenbeck K, Goenster S, Mohamed SA, Finkeldey R, Buerkert A, Gebauer J. 2014. The African baobab (Adansonia digitata, Malvaceae): genetic resources in neglected populations of the Nuba Mountains, Sudan 1. Am. J. Bot. 101, 1498–1507. (10.3732/ajb.1400198) PubMed DOI
Rahul J, Jain MK, Singh SP, Kamal RK, Anuradha Naz A, Gupta AK, Mrityunjay SK. 2015. Adansonia digitata L. (baobab): a review of traditional information and taxonomic description. Asian Pac. J. Trop. Biomed. 5, 79–84. (10.1016/S2221-1691(15)30174-X) DOI
Wickens GE. 1982. The baobab: Africa's upside-down tree. Kew Bull. 37, 173–209. (10.2307/4109961) DOI
Assogbadjo AE, Kyndt T, Sinsin B, Gheysen G, Van Damme P. 2006. Patterns of genetic and morphometric diversity in baobab (Adansonia digitata) populations across different climatic zones of Benin (West Africa). Ann. Bot. 97, 819–830. (10.1093/aob/mcl043) PubMed DOI PMC
Bell KL, Rangan H, Kull CA, Murphy DJ. 2015. The history of introduction of the African baobab (Adansonia digitata, Malvaceae: Bombacoideae) in the Indian subcontinent. R. Soc. open sci. 2, 150370 (10.1098/rsos.150370) PubMed DOI PMC
Kehlenbeck K, Asaah E, Jamnadass R. 2013. Diversity of indigenous fruit trees and their contribution to nutrition and livelihoods in sub-Saharan Africa: examples from Kenya and Cameroon. In Diversifying food and diets: using agricultural biodiversity to improve nutrition and health (eds Fanzo J, Hunter D, Borelli T, Mattei F), pp. 257–269. London, UK: Routledge; (10.4324/9780203127261) DOI
Leakey RRB. 2018. Converting ‘trade-offs’ to ‘trade-ons’ for greatly enhanced food security in Africa: multiple environmental, economic and social benefits from ‘socially modified crops'. Food Secur. 10, 505–524. (10.1007/s12571-018-0796-1) DOI
Hodel RGJ, et al. 2016. The report of my death was an exaggeration: a review for researches using microsatellite in the 21th century. Appl. Plant Sci. 4, 1600025 (10.3732/apps.1600025) PubMed DOI PMC
Meirmans PG, Liu S, Van Tienderen PH. 2018. The analysis of polyploid genetic data. J. Hered. 109, 283–296. (10.1093/jhered/esy006) PubMed DOI
Assogbadjo AE, Kyndt T, Chadare FJ, Sinsin B, Gheysen G, Eyog-Matig O, Van Damme P. 2009. Genetic fingerprinting using AFLP cannot distinguish traditionally classified baobab morphotypes. Agrofor. Syst. 75, 157–165. (10.1007/s10457-008-9157-y) DOI
Kyndt T, Assogbadjo AE, Hardy OJ, Kakaï RG, Sinsin B, Van Damme P, Gheysen G. 2009. Spatial genetic structuring of baobab (Adansonia digitata, Malvaceae) in the traditional agroforestry systems of West Africa. Am. J. Bot. 96, 950–957. (10.3732/ajb.0800266) PubMed DOI
Munthali CRY, Chirwa PW, Changadeya WJ, Akinnifesi FK. 2013. Genetic differentiation and diversity of Adansonia digitata L. (baobab) in Malawi using microsatellite markers. Agrofor. Syst. 87, 117–130. (10.1007/s10457-012-9528-2) DOI
Larsen AS, Vaillant A, Verhaegen D, Kjær ED. 2009. Eighteen SSR-primers for tetraploid Adansonia digitata and its relatives. Conserv. Genet. Resour. 1, 325 (10.1007/s12686-009-9075-y) DOI
Pock Tsy JML, Lumaret R, Mayne D, Vall AOM, Abutaba YIM, Sagna M, Raoseta SOR, Danthu P. 2009. Chloroplast DNA phylogeography suggests a West African centre of origin for the baobab, Adansonia digitata L. (Bombacoideae, Malvaceae). Mol. Ecol. 18, 1707–1715. (10.1111/j.1365-294X.2009.04144.x) PubMed DOI
Gebauer J, et al. 2016. Africa's wooden elephant: the baobab tree (Adansonia digitata L.) in Sudan and Kenya: a review. Genet. Resour. Crop Evol. 63, 377–399. (10.1007/s10722-015-0360-1) DOI
Wickens GE, Lowe P. 2007. The baobabs: pachycauls of Africa, Madagascar and Australia. Dordrecht, The Netherlands: Springer; (doi:10.1007/978-1-4020-6431-9)
Jaetzold R, Schmidt H, Hornetz B, Shisanya C. 2012. Farm management handbook of Kenya: natural conditions and farm management information, subpart C1: eastern province, 2nd edn Nairobi, Kenya: Ministry of Agriculture, Kenya, in cooperation with the German Agency for Technical Cooperation (GTZ).
Jaetzold R, Schmidt H, Hornetz B, Shisanya C. 2012. Farm management handbook of Kenya: natural conditions and farm management information, subpart C2: coast province, 2nd edn Nairobi, Kenya: Ministry of Agriculture, Kenya, in cooperation with the German Agency for Technical Cooperation (GTZ).
Hardy OJ, Vekemans X. 2002. SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620. (10.1046/j.1471-8286.2002.00305.x) DOI
Peakall R, Smouse PE. 2012. GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. (10.1093/bioinformatics/bts460) PubMed DOI PMC
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.
Nielsen R, Tarpy DR, Reeve HK. 2003. Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol. Ecol. 12, 3157–3164. (10.1046/j.1365-294X.2003.01994.x) PubMed DOI
Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590. PubMed PMC
Ronfort J, Jenczewski E, Bataillon T, Rousset F. 1998. Analysis of population structure in autotetraploid species. Genetics 150, 921–930. PubMed PMC
Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. (10.1111/j.1755-0998.2010.02847.x) PubMed DOI
Clark LV, Jasieniuk M. 2011. polysat: an R package for polyploid microsatellite analysis. Mol. Ecol. Resour. 11, 562–566. (10.1111/j.1755-0998.2011.02985.x) PubMed DOI
R Core Team. 2014. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; See http//www.R-project.org/.
Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. PubMed PMC
Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Cullingham CI, Andrew RL. 2017. The K = 2 conundrum. Mol. Ecol. 26, 3594–3602. (10.1111/mec.14187) PubMed DOI
Wang J. 2017. The computer program structure for assigning individuals to populations: easy to use but easier to misuse. Mol. Ecol. Resour. 17, 981–990. (10.1111/1755-0998.12650) PubMed DOI
Earl DA, VonHoldt BM. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. (10.1007/s12686-011-9548-7) DOI
Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. (10.1111/j.1365-294X.2005.02553.x) PubMed DOI
Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. (10.1093/bioinformatics/btm233) PubMed DOI
Rosenberg NA. 2004. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138. (10.1046/j.1471-8286.2003.00566.x) DOI
Amos W, Harwood J. 1998. Factors affecting levels of genetic diversity in natural populations. Phil. Trans. R. Soc. Lond. B 353, 177–186. (10.1098/rstb.1998.0200) PubMed DOI PMC
Godoy FMDR, Lenzi M, Ferreira BHDS, Da Silva LV, Zanella CM, Paggi GM. 2018. High genetic diversity and moderate genetic structure in the self-incompatible, clonal Bromelia hieronymi (Bromeliaceae). Bot. J. Linn. Soc. 187, 672–688. (10.1093/botlinnean/boy037) DOI
Venter SM, Glennon KL, Witkowski ETF, Baum D, Cron GV, Tivakudze R, Karimi N. 2017. Baobabs (Adansonia digitata L.) are self-incompatible and ‘male’ trees can produce fruit if hand-pollinated. South Afr. J. Bot. 109, 263–268. (10.1016/j.sajb.2017.01.007) DOI
Baum DA. 1995. The comparative pollination and floral biology of baobabs (Adansonia- Bombacaceae). Ann. Missouri Bot. Gard. 82, 322–348. (10.2307/2399883) DOI
Soltis PS, Soltis DE. 2000. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl Acad. Sci. USA 97, 7051–7057. (10.1073/pnas.97.13.7051) PubMed DOI PMC
Mandák B, et al. 2016. Flow cytometry, microsatellites and niche models reveal the origins and geographical structure of Alnus glutinosa populations in Europe. Ann. Bot. 117, 107–120. (10.1093/aob/mcv158) PubMed DOI PMC
Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li Y, Wu R, Pang X. 2014. High-level genetic diversity and complex population structure of Siberian apricot (Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLoS ONE 9, e87381 (10.1371/journal.pone.0087381) PubMed DOI PMC
Start AN. 1972. Pollination of the baobab (Adansonia digitata L.) by the fruit bat Rousettus aegyptiacus E. Geoffroy. Afr. J. Ecol. 10, 71–72. (10.1111/j.1365-2028.1972.tb00861.x) DOI
Lompo D, Vinceti B, Gaisberger H, Konrad H, Duminil J, Ouedraogo M, Sina S, Geburek T. 2017. Genetic conservation in Parkia biglobosa (Fabaceae: Mimosoideae)—what do we know? Silvae Genet. 66, 1–8. (10.1515/sg-2017-0001) DOI
Rajakaruna N. 2008. The edaphic factor in the origin of plant species. Int. Geol. Rev. 46, 471–478. (10.2747/0020-6814.46.5.471) DOI
Yang J, Vázquez L, Feng L, Liu Z, Zhao G. 2018. Climatic and soil factors shape the demographical history and genetic diversity of a deciduous oak (Quercus liaotungensis) in Northern China. Front. Plant Sci. 9, 1534 (10.3389/fpls.2018.01534) PubMed DOI PMC
Guggisberg A, et al. 2018. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol. Ecol. 27, 5088–5103. (10.1111/mec.14930) PubMed DOI
Foster SA, McKinnon GE, Steane DA, Potts BM, Vaillancourt RE. 2007. Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus. New Phytol. 175, 370–380. (10.1111/j.1469-8137.2007.02077.x) PubMed DOI
figshare
10.6084/m9.figshare.c.4649240