Genetic diversity and structure of baobab (Adansonia digitata L.) in southeastern Kenya

. 2019 Sep ; 6 (9) : 190854. [epub] 20190911

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31598309

Baobab (Adansonia digitata L.) is an iconic tree of African savannahs. Its multipurpose character and nutritional composition of fruits and leaves offer high economic and social potential for local communities. There is an urgent need to characterize the genetic diversity of the Kenyan baobab populations in order to facilitate further conservation and domestication programmes. This study aims at documenting the genetic diversity and structure of baobab populations in southeastern Kenya. Leaf or bark samples were collected from 189 baobab trees in seven populations distributed in two geographical groups, i.e. four inland and three coastal populations. Nine microsatellite loci were used to assess genetic diversity. Overall, genetic diversity of the species was high and similarly distributed over the populations. Bayesian clustering and principal coordinate analysis congruently divided the populations into two distinct clusters, suggesting significant differences between inland and coastal populations. The genetic differentiation between coastal and inland populations suggests a limited possibility of gene flow between these populations. Further conservation and domestications studies should take into consideration thegeographical origin of trees and more attention should be paid to morphological characterization of fruits and leaves of the coastal and inland populations to understand the causes and the impact of the differentiation.

Zobrazit více v PubMed

Sidibe M, Williams JT. 2002. Adansonia digitata BAOBAB L. Southampton, UK: International Center for Underutilised Crops.

Wiehle M, Prinz K, Kehlenbeck K, Goenster S, Mohamed SA, Finkeldey R, Buerkert A, Gebauer J. 2014. The African baobab (Adansonia digitata, Malvaceae): genetic resources in neglected populations of the Nuba Mountains, Sudan 1. Am. J. Bot. 101, 1498–1507. (10.3732/ajb.1400198) PubMed DOI

Rahul J, Jain MK, Singh SP, Kamal RK, Anuradha Naz A, Gupta AK, Mrityunjay SK. 2015. Adansonia digitata L. (baobab): a review of traditional information and taxonomic description. Asian Pac. J. Trop. Biomed. 5, 79–84. (10.1016/S2221-1691(15)30174-X) DOI

Wickens GE. 1982. The baobab: Africa's upside-down tree. Kew Bull. 37, 173–209. (10.2307/4109961) DOI

Assogbadjo AE, Kyndt T, Sinsin B, Gheysen G, Van Damme P. 2006. Patterns of genetic and morphometric diversity in baobab (Adansonia digitata) populations across different climatic zones of Benin (West Africa). Ann. Bot. 97, 819–830. (10.1093/aob/mcl043) PubMed DOI PMC

Bell KL, Rangan H, Kull CA, Murphy DJ. 2015. The history of introduction of the African baobab (Adansonia digitata, Malvaceae: Bombacoideae) in the Indian subcontinent. R. Soc. open sci. 2, 150370 (10.1098/rsos.150370) PubMed DOI PMC

Kehlenbeck K, Asaah E, Jamnadass R. 2013. Diversity of indigenous fruit trees and their contribution to nutrition and livelihoods in sub-Saharan Africa: examples from Kenya and Cameroon. In Diversifying food and diets: using agricultural biodiversity to improve nutrition and health (eds Fanzo J, Hunter D, Borelli T, Mattei F), pp. 257–269. London, UK: Routledge; (10.4324/9780203127261) DOI

Leakey RRB. 2018. Converting ‘trade-offs’ to ‘trade-ons’ for greatly enhanced food security in Africa: multiple environmental, economic and social benefits from ‘socially modified crops'. Food Secur. 10, 505–524. (10.1007/s12571-018-0796-1) DOI

Hodel RGJ, et al. 2016. The report of my death was an exaggeration: a review for researches using microsatellite in the 21th century. Appl. Plant Sci. 4, 1600025 (10.3732/apps.1600025) PubMed DOI PMC

Meirmans PG, Liu S, Van Tienderen PH. 2018. The analysis of polyploid genetic data. J. Hered. 109, 283–296. (10.1093/jhered/esy006) PubMed DOI

Assogbadjo AE, Kyndt T, Chadare FJ, Sinsin B, Gheysen G, Eyog-Matig O, Van Damme P. 2009. Genetic fingerprinting using AFLP cannot distinguish traditionally classified baobab morphotypes. Agrofor. Syst. 75, 157–165. (10.1007/s10457-008-9157-y) DOI

Kyndt T, Assogbadjo AE, Hardy OJ, Kakaï RG, Sinsin B, Van Damme P, Gheysen G. 2009. Spatial genetic structuring of baobab (Adansonia digitata, Malvaceae) in the traditional agroforestry systems of West Africa. Am. J. Bot. 96, 950–957. (10.3732/ajb.0800266) PubMed DOI

Munthali CRY, Chirwa PW, Changadeya WJ, Akinnifesi FK. 2013. Genetic differentiation and diversity of Adansonia digitata L. (baobab) in Malawi using microsatellite markers. Agrofor. Syst. 87, 117–130. (10.1007/s10457-012-9528-2) DOI

Larsen AS, Vaillant A, Verhaegen D, Kjær ED. 2009. Eighteen SSR-primers for tetraploid Adansonia digitata and its relatives. Conserv. Genet. Resour. 1, 325 (10.1007/s12686-009-9075-y) DOI

Pock Tsy JML, Lumaret R, Mayne D, Vall AOM, Abutaba YIM, Sagna M, Raoseta SOR, Danthu P. 2009. Chloroplast DNA phylogeography suggests a West African centre of origin for the baobab, Adansonia digitata L. (Bombacoideae, Malvaceae). Mol. Ecol. 18, 1707–1715. (10.1111/j.1365-294X.2009.04144.x) PubMed DOI

Gebauer J, et al. 2016. Africa's wooden elephant: the baobab tree (Adansonia digitata L.) in Sudan and Kenya: a review. Genet. Resour. Crop Evol. 63, 377–399. (10.1007/s10722-015-0360-1) DOI

Wickens GE, Lowe P. 2007. The baobabs: pachycauls of Africa, Madagascar and Australia. Dordrecht, The Netherlands: Springer; (doi:10.1007/978-1-4020-6431-9)

Jaetzold R, Schmidt H, Hornetz B, Shisanya C. 2012. Farm management handbook of Kenya: natural conditions and farm management information, subpart C1: eastern province, 2nd edn Nairobi, Kenya: Ministry of Agriculture, Kenya, in cooperation with the German Agency for Technical Cooperation (GTZ).

Jaetzold R, Schmidt H, Hornetz B, Shisanya C. 2012. Farm management handbook of Kenya: natural conditions and farm management information, subpart C2: coast province, 2nd edn Nairobi, Kenya: Ministry of Agriculture, Kenya, in cooperation with the German Agency for Technical Cooperation (GTZ).

Hardy OJ, Vekemans X. 2002. SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620. (10.1046/j.1471-8286.2002.00305.x) DOI

Peakall R, Smouse PE. 2012. GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. (10.1093/bioinformatics/bts460) PubMed DOI PMC

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.

Nielsen R, Tarpy DR, Reeve HK. 2003. Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol. Ecol. 12, 3157–3164. (10.1046/j.1365-294X.2003.01994.x) PubMed DOI

Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590. PubMed PMC

Ronfort J, Jenczewski E, Bataillon T, Rousset F. 1998. Analysis of population structure in autotetraploid species. Genetics 150, 921–930. PubMed PMC

Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. (10.1111/j.1755-0998.2010.02847.x) PubMed DOI

Clark LV, Jasieniuk M. 2011. polysat: an R package for polyploid microsatellite analysis. Mol. Ecol. Resour. 11, 562–566. (10.1111/j.1755-0998.2011.02985.x) PubMed DOI

R Core Team. 2014. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; See http//www.R-project.org/.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. PubMed PMC

Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Cullingham CI, Andrew RL. 2017. The K = 2 conundrum. Mol. Ecol. 26, 3594–3602. (10.1111/mec.14187) PubMed DOI

Wang J. 2017. The computer program structure for assigning individuals to populations: easy to use but easier to misuse. Mol. Ecol. Resour. 17, 981–990. (10.1111/1755-0998.12650) PubMed DOI

Earl DA, VonHoldt BM. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. (10.1007/s12686-011-9548-7) DOI

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. (10.1111/j.1365-294X.2005.02553.x) PubMed DOI

Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. (10.1093/bioinformatics/btm233) PubMed DOI

Rosenberg NA. 2004. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138. (10.1046/j.1471-8286.2003.00566.x) DOI

Amos W, Harwood J. 1998. Factors affecting levels of genetic diversity in natural populations. Phil. Trans. R. Soc. Lond. B 353, 177–186. (10.1098/rstb.1998.0200) PubMed DOI PMC

Godoy FMDR, Lenzi M, Ferreira BHDS, Da Silva LV, Zanella CM, Paggi GM. 2018. High genetic diversity and moderate genetic structure in the self-incompatible, clonal Bromelia hieronymi (Bromeliaceae). Bot. J. Linn. Soc. 187, 672–688. (10.1093/botlinnean/boy037) DOI

Venter SM, Glennon KL, Witkowski ETF, Baum D, Cron GV, Tivakudze R, Karimi N. 2017. Baobabs (Adansonia digitata L.) are self-incompatible and ‘male’ trees can produce fruit if hand-pollinated. South Afr. J. Bot. 109, 263–268. (10.1016/j.sajb.2017.01.007) DOI

Baum DA. 1995. The comparative pollination and floral biology of baobabs (Adansonia- Bombacaceae). Ann. Missouri Bot. Gard. 82, 322–348. (10.2307/2399883) DOI

Soltis PS, Soltis DE. 2000. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl Acad. Sci. USA 97, 7051–7057. (10.1073/pnas.97.13.7051) PubMed DOI PMC

Mandák B, et al. 2016. Flow cytometry, microsatellites and niche models reveal the origins and geographical structure of Alnus glutinosa populations in Europe. Ann. Bot. 117, 107–120. (10.1093/aob/mcv158) PubMed DOI PMC

Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li Y, Wu R, Pang X. 2014. High-level genetic diversity and complex population structure of Siberian apricot (Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLoS ONE 9, e87381 (10.1371/journal.pone.0087381) PubMed DOI PMC

Start AN. 1972. Pollination of the baobab (Adansonia digitata L.) by the fruit bat Rousettus aegyptiacus E. Geoffroy. Afr. J. Ecol. 10, 71–72. (10.1111/j.1365-2028.1972.tb00861.x) DOI

Lompo D, Vinceti B, Gaisberger H, Konrad H, Duminil J, Ouedraogo M, Sina S, Geburek T. 2017. Genetic conservation in Parkia biglobosa (Fabaceae: Mimosoideae)—what do we know? Silvae Genet. 66, 1–8. (10.1515/sg-2017-0001) DOI

Rajakaruna N. 2008. The edaphic factor in the origin of plant species. Int. Geol. Rev. 46, 471–478. (10.2747/0020-6814.46.5.471) DOI

Yang J, Vázquez L, Feng L, Liu Z, Zhao G. 2018. Climatic and soil factors shape the demographical history and genetic diversity of a deciduous oak (Quercus liaotungensis) in Northern China. Front. Plant Sci. 9, 1534 (10.3389/fpls.2018.01534) PubMed DOI PMC

Guggisberg A, et al. 2018. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol. Ecol. 27, 5088–5103. (10.1111/mec.14930) PubMed DOI

Foster SA, McKinnon GE, Steane DA, Potts BM, Vaillancourt RE. 2007. Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus. New Phytol. 175, 370–380. (10.1111/j.1469-8137.2007.02077.x) PubMed DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.4649240

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...