Intraocular pressure response affected by changing of sitting and supine positions
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31602816
PubMed Central
PMC7216979
DOI
10.1111/aos.14267
Knihovny.cz E-zdroje
- Klíčová slova
- baseline, body position, intraocular pressure, sitting, supine, time course,
- MeSH
- analýza rozptylu MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- nitrooční tlak fyziologie MeSH
- pohyb fyziologie MeSH
- pozice sedu * MeSH
- supinační poloha * MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: To assess the intraocular pressure (IOP) time response to change in body position from sitting to supine and from supine to sitting immediately and during rest in each position. METHODS: Forty-four visually healthy volunteers were recruited for the study. The experiment consisted of the initial sitting position (baseline state), the subsequent lying period and the final sitting period. Both periods were 30 min long. The IOP was measured in the baseline state, immediately after each position change and then in minutes 5, 15, 25 and 30 during each period. The Icare Pro® rebound tonometer was used. RESULTS: The mean IOP increased after each position change (2.6 ± 2.4 mmHg after lying down and 2.1 ± 3.1 mmHg after sitting up) and then gradually decreased with time. The mean IOP was 1.41 ± 2.4 mmHg higher in the lying period than in the sitting period; the mean difference was smaller for the lower baseline (0.9 ± 2.2 mmHg) than the higher baseline (1.9 ± 2.5 mmHg). The mean IOP in the final sitting was significantly lower (2.5 ± 1.9 mmHg) than in the initial sitting position. The effect of sex was insignificant. CONCLUSIONS: There was an immediate increase in IOP as a response to both changes in the body position and the subsequent gradual decrease with time. The IOP difference between lying and sitting position was depended on baseline.
Zobrazit více v PubMed
Allingham RR, Damji KF, Freedman SF, Rhee DR & Shields MB (2010): Textbook of Glaucoma. Baltimore, MD: Lippincott Williams & Wilkins; 656 p.
Anderson DR & Grant WM (1973): The influence of position on intraocular pressure. Invest Ophthalmol 12: 204–212. PubMed
Arora N, McLaren JW, Hodge DO & Sit AJ (2017): Effect of body position on epsicleral venous pressure in healthy subjects. Invest Ophthalmol Vis Sci 58: 5151–5156. PubMed
Barrett KE, Barman S, Boitano S & Brooks HL (2012): Ganong′s review of medical physiology. New York: McGraw Hill Education; 752 p.
Cymerman A, Rock PB, Muza SR, Lyons TP, Fulco CS, Mazzeo RS, Butterfield G & Moore LG (2000): Intraocular pressure and acclimatization to 4300 M altitude. Aviat Space Environ Med 71: 1045–1050. PubMed
Duke‐Elder E (1952): The Phasic Variations in the intraocular tension in primary glaucoma. Am J Ophthalmol 35: 1–21. PubMed
Ersanli D, Yildiz S, Sonmez M, Akin A, Sen A & Uzun G (2006): Intraocular pressure at a simulated altitude of 9000 m with and without 100% oxygen. Aviat Space Envir Md 7: 704–706. PubMed
Fang SY, Wan Abdul Halim WH, Mat Baki M & Din NM (2018): Effect of prolonged supine position on the intraocular pressure in patients with obstructive sleep apnea syndrome. Graefes Arch Clin Exp Ophthalmol 256: 783–790. PubMed
Friberg TR (1985): Ocular effects of gravity inversion. West J Med 143: 530–531. PubMed PMC
Friberg TR, Sanborn G & Weinreb RN (1987): Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol 103: 523–526. PubMed
Galin MA, McIvor JW & Magruder GB (1963): Influence of position on intraocular pressure. Am J Ophthalmol 55: 720–723. PubMed
Goldberg I (2003): Relationship between intraocular pressure and preservation of visual field in glaucoma. Surv Ophthalmol 48: 3–7. PubMed
Hasegawa K, Ishida K, Sawada A, Kawase K & Yamamoto T (2006): Diurnal variation of intraocular pressure in suspected normal‐tension glaucoma. Jpn J Ophthalmol 50: 449–454. PubMed
Hirooka K & Shiraga F (2003): Relationship between postural change of the intraocular pressure and visual field loss in primary open‐angle glaucoma. J Glaucoma 12: 379–382. PubMed
Itoop SM, SooHoo JR, Seibold LK, Mansouri K & Kahook MY (2016): Systematic review of current devices for 24‐h intraocular pressure monitoring. Adv Ther 33: 1679–1690. PubMed PMC
Jorge J, Ramoa‐Marques R, Lourenço A, Silva S, Nascimento S, Queirós A & Gonzalez‐Méijome JM (2010): IOP variations in the sitting and supine positions. J Glaucoma 19: 609–612. PubMed
Karadaq R, Sen A, Golmez H, Basmak H, Yildirim N, Karadurmus N, Koseoglu E & Akin A (2008): The effect of short‐term hypobaric hypoxic exposure on intraocular pressure. Curr Eye Res 10: 864–867. PubMed
Katsanos A, Dastiridou AI, Quaranta L, Rulli E, Riva I, Dimasi V, Tsironi EE & Weinreb RN (2017): The effect of posture on intraocular pressure and systemic hemodynamic parameters in treated and untreated patients with primary open‐angle glaucoma. J Ocul Pharmacol Ther 33: 598–603. PubMed
Kiuchi T, Motoyama Y & Oshika T (2010): Postural response of intraocular pressure and visual field damage in patients with untreated normal‐tension glaucoma. J Glaucoma 19: 191–193. PubMed
Krist D, Curciefen C & Jenemann A (2001): Transitory intrathoracic and ‐abdominal pressure elevation in the history of 64 patients with normal pressure glaucoma. Klin Monat Sbl Augenh 4: 209–213. PubMed
Lam A, Wu Y, Wong L & Ho N (2013): IOP variations from sitting to supine postures determined by rebound tonometer. J Optom 6: 95–100.
Lee JC, Kim JE & Park KM (2007): Pupil size variability as an index of autonomic activity – from the experiments of posture, sleepiness and congintive task. J Biomed Eng 28: 55–65.
Lee JY, Yoo C, Jung JH, Hwang YH & Kim YY (2012): The effect of lateral decubitus position on intraocular pressure in healthy young subjects. Acta Ophthalmol 2012: e68–e72. PubMed
Lee TE, Yoo C & Kim YY (2013): Effects of different sleeping postures on intraocular pressure and ocular perfusion pressure in healthy young subjects. Ophthalmology 120: 1565–1570. PubMed
Lindén C, Qvarlander S, Jóhannesson G, Johansson E, Östlund F, Malm J & Eklund A (2018): Normal‐tension glaucoma has normal intracranial pressure. Ophthalmology 125: 361–368. PubMed
Linder BJ, Trick GL & Wolf ML (1988): Altering body position affects intraocular pressure and visual function. Invest Ophthalmol Vis Sci 29: 1492–1497. PubMed
Longo A, Geiser MH & Riva CE (2004): Posture changes and subfoveal choroidal blood flow. Invest Ophthalmol Vis Sci 45: 546–551. PubMed
Malihi M & Sit AJ (2012): Effect of head and body position on intraocular pressure. Ophthalmology 119: 987–991. PubMed
Meurs IA, Thepass G, Stuij A, Bollemeijer JG & Lemij HG (2018): Is a pillow a risk factor for glaucoma? Acta Ophthalmol 96: 795–799. PubMed PMC
Najmanova E, Pluháček F & Botek M (2016): Intraocular pressure response to moderate exercise during 30‐min recovery. Optometry Vision Sci 93: 281–285. PubMed
Najmanova E, Pluháček F & Botek M (2018): Intraocular pressure response to maximal exercise test during recovery. Optom Vis Sci 95: 136–142. PubMed
Najmanová E, Pluháček F, Botek M, Krejčí J & Jarošová J (2019): Intraocular pressure response to short‐term extreme normobaric hypoxia exposure. Front Endocrinol 9: 785. PubMed PMC
Noël C, Kabo AM, Romanet JP, Montmayeur A & Buguet A (2001): Twenty‐four‐hour time course of intraocular pressure in healthy and glaucomatous Africans: relation to sleep patterns. Ophthalmology 108: 139–144. PubMed
Parsley J, Powell RG, Keightley SJ & Elkington AR (1987): Postural response of intraocular pressure in chronic open‐angle glaucoma following trabeculectomy. Ophthalmology 71: 494–496. PubMed PMC
Pavlidis M, Stupp T, Georgalas I, Georgiadou E, Moschos M & Thanos S (2006): Intraocular pressure changes during high‐altitude acclimatization. Graef Arch Clin Exp 3: 298–304. PubMed
Prata TS, De Moraes CG, Kanadani FN, Ritch R & Paranhos A Jr (2010): Posture‐induced intraocular pressure changes: considerations regarding body position in glaucoma patients. Surv Ophthalmol 55: 445–453. PubMed
Qian CX, Duperré J, Hassanaly S & Harissi‐Dagher M (2012): Pre‐ versus post‐ diltion changes in intraocular pressure: their clinical significance. Can J Ophthalmol 5: 448–452. PubMed
Read SA & Collins MJ (2010): Water drinking influences eye length and IOP in young healthy subjects. Exp Eye Res 91: 180–185. PubMed
Salcedo H, Arciniega D, Mayorga M & Wu L (2018): Role of the water‐drinking test in medically treated primary open angle glaucoma patients. J Fr Ophtalmol 41: 421–424. PubMed
Schweier C, Hanson JV, Funk J & Töteberg‐Harms M (2013): Repeatability of intraocular pressure measurements with Icare PRO rebound, Tono‐Pen AVIA, and Goldmann tonometers in sitting and reclining positions. BMC Ophthalmol, 13: 44. PubMed PMC
Susanna CN, Susanna R Jr, Hatanaka M, Susanna BN, Susanna FN & De Moraes CG (2018): Comparison of intraocular pressure changes during the water drinking test between different fluid volumes in patients with primary open‐angle glaucoma. J Glaucoma 27: 950–956. PubMed
Tarkkanen A & Leikola J (1967): Postural variations of the intraocular pressure as measured with the Mackay‐Marg tonometer. Acta Ophthalmol 45: 569–575. PubMed
Vera J, Jiménez R, Redondo B, Cárdenas D & García‐Ramos A (2018): Fitness level modulates intraocular pressure responses to strength exercises. Curr Eye Res 6: 740–746. PubMed
Weinreb RN, Cook J & Friberg TR (1984): Effect of inverted body position on intraocular pressure. Am J Ophthalmol 98: 784–787. PubMed
Wilensky JT, Gieser DK, Dietsche ML, Mori MT & Zeimer R (1993): Individual variability in the diurnal intraocular pressure curve. Ophthalmology 100: 940–944. PubMed