Preparation of Progressive Antibacterial LDPE Surface via Active Biomolecule Deposition Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
JSREP07-022-3-010
Qatar National Research Fund
NPRP10-0205-170349
Qatar National Research Fund
PubMed
31627328
PubMed Central
PMC6835596
DOI
10.3390/polym11101704
PII: polym11101704
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial, biointerface, grafting modification, plasma treatment, polyethylene,
- Publikační typ
- časopisecké články MeSH
The use of polymers in all aspects of daily life is increasing considerably, so there is high demand for polymers with specific properties. Polymers with antibacterial properties are highly needed in the food and medical industries. Low-density polyethylene (LDPE) is widely used in various industries, especially in food packaging, because it has suitable mechanical and safety properties. Nevertheless, the hydrophobicity of its surface makes it vulnerable to microbial attack and culturing. To enhance antimicrobial activity, a progressive surface modification of LDPE using the antimicrobial agent grafting process was applied. LDPE was first exposed to nonthermal radio-frequency (RF) plasma treatment to activate its surface. This led to the creation of reactive species on the LDPE surface, resulting in the ability to graft antibacterial agents, such as ascorbic acid (ASA), commonly known as vitamin C. ASA is a well-known antioxidant that is used as a food preservative, is essential to biological systems, and is found to be reactive against a number of microorganisms and bacteria. The antimicrobial effect of grafted LDPE with ASA was tested against two strong kinds of bacteria, namely, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), with positive results. Surface analyses were performed thoroughly using contact angle measurements and peel tests to measure the wettability or surface free energy and adhesion properties after each modification step. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the surface morphology or topography changes of LDPE caused by plasma treatment and ASA grafting. Surface chemistry was studied by measuring the functional groups and elements introduced to the surface after plasma treatment and ASA grafting, using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). These results showed wettability, adhesion, and roughness changes in the LDPE surface after plasma treatment, as well as after ASA grafting. This is a positive indicator of the ability of ASA to be grafted onto polymeric materials using plasma pretreatment, resulting in enhanced antibacterial activity.
Center for Advanced Materials Qatar University P O Box 2713 Doha Qatar
Faculty of Technology Tomas Bata University in Zlin Vavreckova 275 760 01 Zlin Czech Republic
Zobrazit více v PubMed
Han J.H., Floros J.D. Casting Antimicrobial Packaging Films and Measuring Their Physical Properties and Antimicrobial Activity. J. Plast. Film Sheeting. 1997;13:287–298. doi: 10.1177/875608799701300405. DOI
De Azeredo H.M.C. Nanocomposites for food packaging applications. Food Res. Int. 2009;42:1240–1253. doi: 10.1016/j.foodres.2009.03.019. DOI
Pankaj S., Bueno-Ferrer C., Misra N., Milosavljević V., O’Donnell C., Bourke P., Keener K., Cullen P. Applications of cold plasma technology in food packaging. Trends Food Sci. Technol. 2014;35:5–17. doi: 10.1016/j.tifs.2013.10.009. DOI
Dowling D., Tynan J., Ward P., Hynes A., Cullen J., Byrne G. Atmospheric pressure plasma treatment of amorphous polyethylene terephthalate for enhanced heatsealing properties. Int. J. Adhes. Adhes. 2012;35:1–8. doi: 10.1016/j.ijadhadh.2012.01.025. DOI
Kavc T., Kern W., Ebel M.F., Svagera R., Pölt P. Surface Modification of Polyethylene by Photochemical Introduction of Sulfonic Acid Groups. Chem. Mater. 2000;12:1053–1059. doi: 10.1021/cm991158p. DOI
Pukánszky B., Fekete E. Mineral Fillers in Thermoplastics I: Raw Materials and Processing. Springer; Berlin/Heidelberg, Germany: 2007. Adhesion and Surface Modification; pp. 109–153.
Chanunpanich N., Ulman A., Strzhemechny Y.M., Schwarz S.A., Janke A., Braun H.G., Kraztmuller T. Surface Modification of Polyethylene through Bromination. Langmuir. 1999;15:2089–2094. doi: 10.1021/la980996f. DOI
Griesser H.J., Da Y., Hughes A.E., Gengenbach T.R., Mau A.W.H. Shallow reorientation in the surface dynamics of plasma-treated fluorinated ethylene-propylene polymer. Langmuir. 1991;7:2484–2491. doi: 10.1021/la00059a015. DOI
Liston E., Martinu L., Wertheimer M. Plasma surface modification of polymers for improved adhesion: A critical review. J. Adhes. Sci. Technol. 1993;7:1091–1127. doi: 10.1163/156856193X00600. DOI
Albertsson A.C., editor. Long Term Properties of Polyolefins. Volume 169. Springer; Berlin/Heidelberg, Germany: 2004. Advances in Polymer Science.
Desai S.M., Singh R.P. Long Term Properties of Polyolefins. Springer; Berlin/Heidelberg, Germany: 2004. Surface Modification of Polyethylene; pp. 231–294.
Allen K.W. Polymer surface modification: Relevance to adhesion. Polym. Int. 2002;42:235.
Biederman H. Plasma Polymer Films. Imperial College Press and Distributed by World Scientific Publishing Co.; Singapore: 2012.
Pascual M., Balart R., Sánchez L., Fenollar O., Calvo O. Study of the aging process of corona discharge plasma effects on low density polyethylene film surface. J. Mater. Sci. 2008;43:4901–4909. doi: 10.1007/s10853-008-2712-0. DOI
Popelka A., Novák I., Lehocký M., Junkar I., Mozetič M., Kleinová A., Janigová I., Slouf M., Bílek F., Chodák I. A new route for chitosan immobilization onto polyethylene surface. Carbohydr. Polym. 2012;90:1501–1508. doi: 10.1016/j.carbpol.2012.07.021. PubMed DOI
Graves D.B. Low temperature plasma biomedicine: A tutorial review. Phys. Plasmas. 2014;21:80901. doi: 10.1063/1.4892534. DOI
Popelka A., Novák I., Al-maadeed M.A.S.A., Ouederni M., Krupa I. Effect of corona treatment on adhesion enhancement of LLDPE. Surf. Coat. Technol. 2018;335:118–125. doi: 10.1016/j.surfcoat.2017.12.018. DOI
Abusrafa A.E., Habib S., Krupa I., Ouederni M., Popelka A. Modification of Polyethylene by RF Plasma in Different/Mixture Gases. Coatings. 2019;9:145. doi: 10.3390/coatings9020145. DOI
Kong M.G., Kroesen G., Morfill G., Nosenko T., Shimizu T., Van Dijk J., Zimmermann J.L. Plasma medicine: An introductory review. New J. Phys. 2009;11:115012. doi: 10.1088/1367-2630/11/11/115012. DOI
Bardos L., Barankova H. Cold atmospheric plasma: Sources, processes, and applications. Thin Solid Films. 2010;518:6705–6713. doi: 10.1016/j.tsf.2010.07.044. DOI
Helgadóttir S., Pandit S., Mokkapati V.R.S.S., Westerlund F., Apell P., Mijakovic I. Vitamin C Pretreatment Enhances the Antibacterial Effect of Cold Atmospheric Plasma. Front. Cell. Infect. Microbiol. 2017;7:43. doi: 10.3389/fcimb.2017.00043. PubMed DOI PMC
De Geyter N., Morent R. Nonthermal Plasma Sterilization of Living and Nonliving Surfaces. Annu. Rev. Biomed. Eng. 2012;14:255–274. doi: 10.1146/annurev-bioeng-071811-150110. PubMed DOI
Joshi S.G., Paff M., Friedman G., Fridman G., Fridman A., Brooks A.D. Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. Am. J. Infect. Control. 2010;38:293–301. doi: 10.1016/j.ajic.2009.11.002. PubMed DOI
Bazaka K., Jacob M.V., Chrzanowski W., Ostrikov K. Anti-bacterial surfaces: Natural agents, mechanisms of action, and plasma surface modification. RSC Adv. 2015;5:48739–48759. doi: 10.1039/C4RA17244B. DOI
Weng Y.M., Chen M.J., Chen W. Antimicrobial Food Packaging Materials from Poly (ethylene-co-methacrylic acid) LWT. 1999;32:191–195. doi: 10.1006/fstl.1998.0519. DOI
Ahmed I., Ready D., Wilson M., Knowles J.C. Antimicrobial effect of silver-doped phosphate-based glasses. J. Biomed. Mater. Res. Part A. 2006;79:618–626. doi: 10.1002/jbm.a.30808. PubMed DOI
Valappil S.P., Pickup D.M., Carroll D.L., Hope C.K., Pratten J., Newport R.J., Smith M.E., Wilson M., Knowles J.C. Effect of Silver Content on the Structure and Antibacterial Activity of Silver-Doped Phosphate-Based Glasses. Antimicrob. Agents Chemother. 2007;51:4453–4461. doi: 10.1128/AAC.00605-07. PubMed DOI PMC
Wei Q., Haag R. Universal polymer coatings and their representative biomedical applications. Mater. Horiz. 2015;2:567–577. doi: 10.1039/C5MH00089K. DOI
Muñoz-Bonilla A., Fernández-García M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012;37:281–339. doi: 10.1016/j.progpolymsci.2011.08.005. DOI
Aider M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT. 2010;43:837–842. doi: 10.1016/j.lwt.2010.01.021. DOI
Leceta I., Guerrero P., De La Caba K. Functional properties of chitosan-based films. Carbohydr. Polym. 2013;93:339–346. doi: 10.1016/j.carbpol.2012.04.031. PubMed DOI
Theapsak S., Watthanaphanit A., Rujiravanit R. Preparation of Chitosan-Coated Polyethylene Packaging Films by DBD Plasma Treatment. ACS Appl. Mater. Interfaces. 2012;4:2474–2482. doi: 10.1021/am300168a. PubMed DOI
Correia V.G., Ferraria A.M., Pinho M.G., Aguiar-Ricardo A. Antimicrobial Contact-Active Oligo (2-oxazoline) s-Grafted Surfaces for Fast Water Disinfection at the Point-of-Use. Biomacromolecules. 2015;16:3904–3915. doi: 10.1021/acs.biomac.5b01243. PubMed DOI
Tiller J.C., Lee S.B., Lewis K., Klibanov A.M. Polymer surfaces derivatized with poly (vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol. Bioeng. 2002;79:465–471. doi: 10.1002/bit.10299. PubMed DOI
Ardjani T.E.A., Alvarez-Idaboy J.R. Radical scavenging activity of ascorbic acid analogs: Kinetics and mechanisms. Theor. Chem. Acc. 2018;137:69. doi: 10.1007/s00214-018-2252-x. DOI
Niki E. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am. J. Clin. Nutr. 1991;54:1119–1124. doi: 10.1093/ajcn/54.6.1119s. PubMed DOI
Liu K., Yuan C., Chen Y., Li H., Liu J. Combined effects of ascorbic acid and chitosan on the quality maintenance and shelf life of plums. Sci. Hortic. 2014;176:45–53. doi: 10.1016/j.scienta.2014.06.027. DOI
Verghese R.J., Ramya S., Kanungo R. In vitro Antibacterial Activity of Vitamin C and in Combination with Ciprofloxacin against Uropathogenic Escherichia coli. J. Clin. Diagn. Res. 2017;11:1–5. doi: 10.7860/JCDR/2017/31251.10960. DOI
Tajkarimi M., Ibrahim S.A. Antimicrobial activity of ascorbic acid alone or in combination with lactic acid on Escherichia coli O157:H7 in laboratory medium and carrot juice. Food Control. 2011;22:801–804. doi: 10.1016/j.foodcont.2010.11.030. DOI
Hemilä H. Vitamin C and infections. Nutrients. 2017;9:339. doi: 10.3390/nu9040339. PubMed DOI PMC
Vrijsen R., Everaert L., Boeyé A. Antiviral Activity of Flavones and Potentiation by Ascorbate. J. Gen. Virol. 1988;69:1749–1751. doi: 10.1099/0022-1317-69-7-1749. PubMed DOI
Verghese R., Mathew S., David A. Antimicrobial activity of Vitamin C demonstrated on uropathogenic Escherichia coli and Klebsiella pneumoniae. J. Curr. Res. Sci. Med. 2018;3:88–93.
Kallio J., Jaakkola M., Mäki M., Kilpeläinen P., Virtanen V. Vitamin C Inhibits Staphylococcus aureus Growth and Enhances the Inhibitory Effect of Quercetin on Growth of Escherichia coli In Vitro. Planta Med. 2012;78:1824–1830. doi: 10.1055/s-0032-1315388. PubMed DOI
Li S., Taylor K.B., Kelly S.J., Jedrzejas M.J. Vitamin C Inhibits the Enzymatic Activity of Streptococcus pneumoniae Hyaluronate Lyase. J. Biol. Chem. 2001;276:15125–15130. doi: 10.1074/jbc.M011102200. PubMed DOI
Isela S.R., Sergio N., José M.J. Ascorbic Acid On Oral Microbial Growth and Biofilm. Pharma Innov. J. 2013;2:103–109.
Eddy B.P., Ingram M. Interactions between ascorbic acid and bacteria. Bacteriol. Rev. 1953;17:93–107. PubMed PMC
Du J., Cullen J.J., Buettner G.R. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta BBA Bioenerg. 2012;1826:443–457. doi: 10.1016/j.bbcan.2012.06.003. PubMed DOI PMC
Pal D., Nimse S.B. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986–28006.
JIS Z 2801/ISO 22196—Microbe Investigations (MIS) [(accessed on 6 August 2019)]; Available online: https://www.microbe-investigations.com/testing-methods/jis-z-2801-iso-22196/
Suzuki M., Kishida A., Iwata H., Hata Y., Ikada Y. Graft copolymerization of Acrylamide onto a polythylene surface pretreated with a glow discharge. Macromolecules. 1986;19:1804–1808. doi: 10.1021/ma00161a005. DOI
Wagner C.D., Smith R.H., Peters E.D. Determination of Organic Peroxides—Evaluation of a Modified lodometric Method. Anal. Chem. 1947;19:976–979. doi: 10.1021/ac60012a010. DOI
Thelen H., Kaufmann R., Klee D. Development and characterization of a wettable surface modified aromatic polyethersulphone using glow discharge induced HEMA-graft polymerisation. Anal. Bioanal. Chem. 1995;353:290–296. doi: 10.1007/BF00322054. PubMed DOI
Busscher H., Van Pelt A., De Boer P., De Jong H., Arends J. The effect of surface roughening of polymers on measured contact angles of liquids. Colloids Surf. 1984;9:319–331. doi: 10.1016/0166-6622(84)80175-4. DOI
Erbil H.Y. Surface tension of polymers. In: Birdi K.S., editor. CRC Handbook of Surface and Colloid Chemistry. CRC Press; Boca Raton, FL, USA: 2015. pp. 265–312.
Jay J.M. Modern Food Microbiology. Springer; Berlin/Heidelberg, Germany: 2012.