Expansion of Imaginal Disc Growth Factor Gene Family in Diptera Reflects the Evolution of Novel Functions
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-13784Y
Grantová Agentura České Republiky
INTER-COST no. LTC17073
Czech Republic Ministry of Education, Youth and Sports
PubMed
31635152
PubMed Central
PMC6835396
DOI
10.3390/insects10100365
PII: insects10100365
Knihovny.cz E-resources
- Keywords
- Drosophila, IDGF, chitinase, chitinase-like protein, phylogeny, positive selection,
- Publication type
- Journal Article MeSH
Imaginal disc growth factors (IDGFs) are a small protein family found in insects. They are related to chitinases and implicated in multiple functions, including cell growth stimulation, antimicrobial activity, insect hemolymph clotting, and maintenance of the extracellular matrix. A number of new IDGFs have been found in several insect species and their detailed phylogenetic analysis provides a good basis for further functional studies. To achieve this goal, we sequenced Idgf cDNAs from several lepidopteran and trichopteran species and supplemented our data with sequences retrieved from public databases. A comparison of Idgf genes in different species showed that Diptera typically contain several Idgf paralogs with a simple exon-intron structure (2-3 exons), whereas lepidopteran Idgfs appear as a single copy per genome and contain a higher number of exons (around 9). Our results show that, while lepidopteran Idgfs, having single orthologs, are characterized by low divergence and stronger purifying selection over most of the molecule, the duplicated Idgf genes in Diptera, Idgf1 and Idgf4, exhibit signs of positive selection. This characterization of IDGF evolution provides, to our knowledge, the first information on the changes that formed these important molecules.
See more in PubMed
Kawamura K., Shibata T., Saget O., Peel D., Bryant P.J. A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development. 1999;126:211–219. PubMed
Kirkpatrick R.B., Matico R.E., McNulty D.E., Strickler J.E., Rosenb M. An abundantly secreted glycorotein from Drosophila melanogaster is related to mammalian secretory proteins produced in rheumatoid tissues and by activated macrophages. Gene. 1995;153:147–154. doi: 10.1016/0378-1119(94)00756-I. PubMed DOI
Broz V., Kucerova L., Rouhova L., Fleischmannova J., Strnad H., Bryant P.J., Zurovec M. Drosophila imaginal disc growth factor 2 is a trophic factor involved in energy balance, detoxification, and innate immunity. Sci. Rep. 2017;7:43273. doi: 10.1038/srep43273. PubMed DOI PMC
Kucerova L., Broz V., Arefin B., Maaroufi H.O., Hurychova J., Strnad H., Zurovec M., Theopold U. The Drosophila Chitinase-like protein IDGF3 is involved in protection against nematodes and in wound healing. J. Innate Immun. 2016;8:199–210. doi: 10.1159/000442351. PubMed DOI PMC
Pesch Y.Y., Riedel D., Patil K.R., Loch G., Behr M. Chitinases and imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci. Rep. 2016;6:18340. doi: 10.1038/srep18340. PubMed DOI PMC
Shi L., Paskewitz S.M. Identification and molecular characterization of two immune-responsive chitinase-like proteins from Anopheles gambiae. Insect Mol. Biol. 2004;13:387–398. doi: 10.1111/j.0962-1075.2004.00496.x. PubMed DOI
Uraki R., Hastings A.K., Brackney D.E., Armstrong P.M., Fikrig E. AgBR1 antibodies delay lethal Aedes aegypti-borne West Nile virus infection in mice. NPJ Vaccines. 2019;4:23. doi: 10.1038/s41541-019-0120-x. PubMed DOI PMC
Varela P.F., Llera A.S., Mariuzza R.A., Tormo J. Crystal structure of imaginal disc growth factor-2. A member of a new family of growth-promoting glycoproteins from Drosophila melanogaster. J. Biol. Chem. 2002;277:13229–13236. doi: 10.1074/jbc.M110502200. PubMed DOI
Kanost M.R., Zepp M.K., Ladendorff N.E., Andersson L.A. Isolation and characterization of a hemocyte aggregation inhibitor from hemolymph of Manduca sexta larvae. Arch. Insect Biochem. 1994;27:123–136. doi: 10.1002/arch.940270205. PubMed DOI
Pan Y., Lu P., Wang Y., Yin L.J., Ma H.X., Ma G.H., Chen K.P., He Y.Q. In silico identification of novel chitinase-like proteins in the silkworm, Bombyx mori, genome. J. Insect Sci. 2012;12:1–14. doi: 10.1673/031.012.15001. PubMed DOI PMC
Kludkiewicz B., Kucerova L., Konikova T., Strnad H., Hradilova M., Zaloudikova A., Sehadova H., Konik P., Sehnal F., Zurovec M. The expansion of genes encoding soluble silk components in the greater wax moth, Galleria mellonella. Insect Biochem. Mol. Biol. 2019;106:28–38. doi: 10.1016/j.ibmb.2018.11.003. PubMed DOI
Zurovcova M., Tatarenkov A., Berec L. Differences in the pattern of evolution in six physically linked genes of Drosophila melanogaster. Gene. 2006;381:24–33. doi: 10.1016/j.gene.2006.06.011. PubMed DOI
Kucerova L., Zurovec M., Kludkiewicz B., Hradilova M., Strnad H., Sehnal F. Modular structure, sequence diversification and appropriate nomenclature of seroins produced in the silk glands of Lepidoptera. Sci. Rep. 2019;9:3797. doi: 10.1038/s41598-019-40401-3. PubMed DOI PMC
Zurovec M., Yonemura N., Kludkiewicz B., Sehnal F., Kodrik D., Vieira L.C., Kucerova L., Strnad H., Konik P., Sehadova H. Sericin composition in the silk of Antheraea yamamai. Biomacromolecules. 2016;17:1776–1787. doi: 10.1021/acs.biomac.6b00189. PubMed DOI
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q.D., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Afgan E., Baker D., Batut B., van den Beek M., Bouvier D., Cech M., Chilton J., Clements D., Coraor N., Gruning B.A., et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46:W537–W544. doi: 10.1093/nar/gky379. PubMed DOI PMC
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Lefort V., Longueville J.E., Gascuel O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 2017;34:2422–2424. doi: 10.1093/molbev/msx149. PubMed DOI PMC
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
FigTree, Version 1.4.3. [(accessed on 4 October 2016)]; Available online: http://tree.bio.ed.ac.uk/software/figtree.
Stern A., Doron-Faigenboim A., Erez E., Martz E., Bacharach E., Pupko T. Selecton 2007: Advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res. 2007;35:W506–W511. doi: 10.1093/nar/gkm382. PubMed DOI PMC
Doron-Faigenboim A., Stern A., Bacharach E., Pupko T. Selecton: A server for detecting evolutionary forces at a single amino-acid site. Bioinformatics. 2005;21:2101–2103. doi: 10.1093/bioinformatics/bti259. PubMed DOI
Swanson W.J., Nielsen R., Yang Q. Pervasive adaptive evolution in mammalian fertilization proteins. Mol. Biol. Evol. 2003;20:18–20. doi: 10.1093/oxfordjournals.molbev.a004233. PubMed DOI
Pond S.L.K., Frost S.D.W., Muse S.V. HyPhy: Hypothesis testing using phylogenies. Bioinformatics. 2005;21:676–679. doi: 10.1093/bioinformatics/bti079. PubMed DOI
Murrell B., Moola S., Mabona A., Weighill T., Sheward D., Pond S.L.K., Scheffler K. FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Mol. Biol. Evol. 2013;30:1196–1205. doi: 10.1093/molbev/mst030. PubMed DOI PMC
Murrell B., Wertheim J.O., Moola S., Weighill T., Scheffler K., Pond S.L.K. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012;8:e1002764. doi: 10.1371/journal.pgen.1002764. PubMed DOI PMC
Pond S.L.K., Murrell B., Fourment M., Frost S.D.W., Delport W., Scheffler K. A Random Effects Branch-Site Model for detecting episodic diversifying seection. Mol. Biol. Evol. 2011;28:3033–3043. doi: 10.1093/molbev/msr125. PubMed DOI PMC
Smith M.D., Wertheim J.O., Weaver S., Murrell B., Scheffler K., Pond S.L.K. Less is more: An Adaptive Branch-Site Random Effects Model for detection of episodic diversifying selection. Mol. Biol. Evol. 2015;32:1342–1353. doi: 10.1093/molbev/msv022. PubMed DOI PMC
Wertheim J.O., Murrell B., Smith M.D., Kosakovsky Pond S.L., Scheffler K. RELAX: Detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 2015;32:820–832. doi: 10.1093/molbev/msu400. PubMed DOI PMC
McClellan D.A., McCracken K.G. Estimating the influence of selection on the variable amino acid sites of the cytochrome B protein functional domains. Mol. Biol. Evol. 2001;18:917–925. doi: 10.1093/oxfordjournals.molbev.a003892. PubMed DOI
Woolley S., Johnson J., Smith M.J., Crandall K.A., McClellan D.A. TreeSAAP: Selection on amino acid properties using phylogenetic trees. Bioinformatics. 2003;19:671–672. doi: 10.1093/bioinformatics/btg043. PubMed DOI
Hoang D.T., Chernmor O., von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating Maximum-Likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
i5K Consortium The i5K Initiative: Advancing arthropod genomics for knowledge, human health, agriculture, and the environment. J. Hered. 2013;104:595–600. doi: 10.1093/jhered/est050. PubMed DOI PMC
Wiegmann B.M., Trautwein M.D., Winkler I.S., Barr N.B., Kim J.W., Lambkin C., Bertone M.A., Cassel B.K., Bayless K.M., Heimberg A.M., et al. Episodic radiations in the fly tree of life. Proc. Natl. Acad. Sci. USA. 2011;108:5690–5695. doi: 10.1073/pnas.1012675108. PubMed DOI PMC
Wahlberg N., Wheat C.W., Pena C. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths) PLoS ONE. 2013;8:e80875. doi: 10.1371/journal.pone.0080875. PubMed DOI PMC
Nielsen R. Statistical tests of selective neutrality in the age of genomics. Heredity. 2001;86:641–647. doi: 10.1046/j.1365-2540.2001.00895.x. PubMed DOI
Yang Z.H. Inference of selection from multiple species alignments. Curr. Opin. Genet. Dev. 2002;12:688–694. doi: 10.1016/S0959-437X(02)00348-9. PubMed DOI
Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C., Frandsen P.B., Ware J., Flouri T., Beutel R.G., et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–767. doi: 10.1126/science.1257570. PubMed DOI
Jmol: An Open-Source Java Viewer for Chemical Structures in 3D. [(accessed on 23 March 2018)]; Available online: https://www.webcitation.org/getfile?fileid=90d165802e6a28166f4628fb5502a4783e6cf685.
Dolezal T., Gazi M., Zurovec M., Bryant P.J. Genetic analysis of the ADGF multigene family by homologous recombination and gene conversion in Drosophila. Genetics. 2003;165:653–666. PubMed PMC
Gubb D. Intron-Delay and the precision of expression of homeotic gene-products in Drosophila. Dev. Genet. 1986;7:119–131. doi: 10.1002/dvg.1020070302. DOI
Troczka B.J., Richardson E., Homem R.A., Davies T.G.E. An analysis of variability in genome organisation of intracellular calcium release channels across insect orders. Gene. 2018;670:70–86. doi: 10.1016/j.gene.2018.05.075. PubMed DOI PMC
Xi Y., Pan P.L., Ye Y.X., Yu B., Xu H.J., Zhang C.X. Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Mol. Biol. 2015;24:29–40. doi: 10.1111/imb.12133. PubMed DOI
Omar M.A.A., Ao Y., Li M., He K., Xu L., Tong H., Jiang M., Li F. The functional difference of eight chitinase genes between male and female of the cotton mealybug, Phenacoccus solenopsis. Insect Mol. Biol. 2019;28:550–567. doi: 10.1111/imb.12572. PubMed DOI
Wang H.B., Sakudoh T., Kawasaki H., Iwanaga M., Araki K., Fujimoto H., Takada N., Iwano H., Tsuchida K. Purification and expression analysis of imaginal disc growth factor in the silkworm, Bombyx mori. J. Insect Physiol. 2009;55:1065–1071. doi: 10.1016/j.jinsphys.2009.08.001. PubMed DOI
Tsuzuki S., Iwami M., Sakurai S. Ecdysteroid-inducible genes in the programmed cell death during insect metamorphosis. Insect Biochem. Mol. Biol. 2001;31:321–331. doi: 10.1016/S0965-1748(00)00124-7. PubMed DOI
Asgari S., Schmidt O. Isolation of an imaginal disc growth factor homologue from Pieris rapae and its expression following parasitization by Cotesia rubecula. J. Insect Physiol. 2004;50:687–694. doi: 10.1016/j.jinsphys.2004.05.003. PubMed DOI
Zhang J., Iwai S., Tsugehara T., Takeda M. MbIDGF, a novel member of the imaginal disc growth factor family in Mamestra brassicae, stimulates cell proliferation in two lepidopteran cell lines without insulin. Insect Biochem. Mol. 2006;36:536–546. doi: 10.1016/j.ibmb.2006.04.002. PubMed DOI
Zhu Q.S., Arakane Y., Banerjee D., Beeman R.W., Kramer K.J., Muthukrishnan S. Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem. Mol. 2008;38:452–466. doi: 10.1016/j.ibmb.2007.06.010. PubMed DOI
Gu X., Li Z., Su Y., Zhao Y., Liu L. Imaginal disc growth factor 4 regulates development and temperature adaptation in Bactrocera dorsalis. Sci. Rep. 2019;9:931. doi: 10.1038/s41598-018-37414-9. PubMed DOI PMC
De Gregorio E., Spellman P.T., Rubin G.M., Lemaitre B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. USA. 2001;98:12590–12595. doi: 10.1073/pnas.221458698. PubMed DOI PMC
Collin M.A., Mita K., Sehnal F., Hayashi C.Y. Molecular evolution of lepidopteran silk proteins: Insights from the ghost moth, Hepialus californicus. J. Mol. Evol. 2010;70:519–529. doi: 10.1007/s00239-010-9349-8. PubMed DOI PMC
Zurovcova M., Ayala F.J. Polymorphism patterns in two tightly linked developmental genes, Idgf1 and Idgf3, of Drosophila melanogaster. Genetics. 2002;162:177–188. PubMed PMC
Li H., Greene L.H. Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding. PLoS ONE. 2010;5:e8654. doi: 10.1371/journal.pone.0008654. PubMed DOI PMC
Zees A.C., Pyrpassopoulos S., Vorgias C.E. Insights into the role of the (alpha plus beta) insertion in the TIM-barrel catalytic domain, regarding the stability and the enzymatic activity of Chitinase A from Serratia marcescens. BBA Proteins Proteom. 2009;1794:23–31. doi: 10.1016/j.bbapap.2008.09.018. PubMed DOI