Drosophila imaginal disc growth factor 2 is a trophic factor involved in energy balance, detoxification, and innate immunity
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28230183
PubMed Central
PMC5322392
DOI
10.1038/srep43273
PII: srep43273
Knihovny.cz E-resources
- MeSH
- Drosophila immunology metabolism MeSH
- Energy Metabolism * MeSH
- Glycoproteins metabolism MeSH
- Hemolymph chemistry MeSH
- Cells, Cultured MeSH
- Inactivation, Metabolic * MeSH
- Immunity, Innate * MeSH
- Drosophila Proteins metabolism MeSH
- Gene Expression Profiling MeSH
- Cell Survival drug effects MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Glycoproteins MeSH
- Idgf2 protein, Drosophila MeSH Browser
- Drosophila Proteins MeSH
Drosophila imaginal disc growth factor 2 (IDGF2) is a member of chitinase-like protein family (CLPs) able to induce the proliferation of imaginal disc cells in vitro. In this study we characterized physiological concentrations and expression of IDGF2 in vivo as well as its impact on the viability and transcriptional profile of Drosophila cells in vitro. We show that IDGF2 is independent of insulin and protects cells from death caused by serum deprivation, toxicity of xenobiotics or high concentrations of extracellular adenosine (Ado) and deoxyadenosine (dAdo). Transcriptional profiling suggested that such cytoprotection is connected with the induction of genes involved in energy metabolism, detoxification and innate immunity. We also show that IDGF2 is an abundant haemolymph component, which is further induced by injury in larval stages. The highest IDGF2 accumulation was found at garland and pericardial nephrocytes supporting its role in organismal defence and detoxification. Our findings provide evidence that IDGF2 is an important trophic factor promoting cellular and organismal survival.
Developmental and Cell Biology School of Biological Sciences University of California Irvine USA
Faculty of Science University of South Bohemia Branisovska 31 370 05 Ceske Budejovice Czech Republic
Institute of Entomology Biology Centre CAS Branisovska 31 370 05 Ceske Budejovice Czech Republic
Institute of Molecular Genetics CAS Videnska 1083 142 20 Prague 4 Czech Republic
See more in PubMed
Dolezelova E., Zurovec M., Dolezal T., Simek P. & Bryant P. J. The emerging role of adenosine deaminases in insects. Insect Biochem Mol Biol 35, 381–389 (2005). PubMed
Dolezal T., Dolezelova E., Zurovec M. & Bryant P. J. A role for adenosine deaminase in Drosophila larval development. PLoS Biol 3, e201 (2005). PubMed PMC
Hipfner D. R. & Cohen S. M. New growth factors for imaginal discs. Bioessays 21, 718–720 (1999). PubMed
Kirkpatrick R. B., Matico R. E., McNulty D. E., Strickler J. E. & Rosenberg M. An abundantly secreted glycoprotein from Drosophila melanogaster is related to mammalian secretory proteins produced in rheumatoid tissues and by activated macrophages. Gene 153, 147–154 (1995). PubMed
Kawamura K., Shibata T., Saget O., Peel D. & Bryant P. J. A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development 126, 211–219 (1999). PubMed
Irving P. et al.. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol 7, 335–350 (2005). PubMed
Varela P. F., Llera A. S., Mariuzza R. A. & Tormo J. Crystal structure of imaginal disc growth factor-2. A member of a new family of growth-promoting glycoproteins from Drosophila melanogaster. J Biol Chem 277, 13229–13236 (2002). PubMed
Watanabe T., Oyanagi W., Suzuki K., Ohnishi K. & Tanaka H. Structure of the gene encoding chitinase D of Bacillus circulans WL-12 and possible homology of the enzyme to other prokaryotic chitinases and class III plant chitinases. J Bacteriol 174, 408–414 (1992). PubMed PMC
Zhu Q., Arakane Y., Beeman R. W., Kramer K. J. & Muthukrishnan S. Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum. Insect Biochem Mol Biol 38, 467–477 (2008). PubMed
He C. H. et al.. Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor alpha2. Cell Rep 4, 830–841 (2013). PubMed PMC
Johansen J. S., Cintin C., Jorgensen M., Kamby C. & Price P. A. Serum YKL-40: a new potential marker of prognosis and location of metastases of patients with recurrent breast cancer. Eur J Cancer 31A, 1437–1442 (1995). PubMed
Zhou Y. et al.. Chitinase 3-like 1 suppresses injury and promotes fibroproliferative responses in Mammalian lung fibrosis. Sci Transl Med 6, 240ra276 (2014). PubMed PMC
Karlsson C. et al.. Proteomic analysis of the Drosophila larval hemolymph clot. J Biol Chem 279, 52033–52041 (2004). PubMed
Vierstraete E. et al.. Proteomics in Drosophila melanogaster: first 2D database of larval hemolymph proteins. Biochem Biophys Res Commun 304, 831–838 (2003). PubMed
Blanco E. et al.. Gene expression following induction of regeneration in Drosophila wing imaginal discs. Expression profile of regenerating wing discs. BMC Dev Biol 10, 94 (2010). PubMed PMC
Fernandez-Almonacid R. & Rosen O. M. Structure and ligand specificity of the Drosophila melanogaster insulin receptor. Molecular and Cellular Biology 7, 2718–2727 (1987). PubMed PMC
Peel D. J., Johnson S. A. & Milner M. J. The ultrastructure of imaginal disc cells in primary cultures and during cell aggregation in continuous cell lines. Tissue Cell 22, 749–758 (1990). PubMed
Zurovec M., Dolezal T., Gazi M., Pavlova E. & Bryant P. J. Adenosine deaminase-related growth factors stimulate cell proliferation in Drosophila by depleting extracellular adenosine. Proc Natl Acad Sci USA 99, 4403–4408 (2002). PubMed PMC
Hershfield M. S. & Kredich N. M. Resistance of an adenosine kinase-deficient human lymphoblastoid cell line to effects of deoxyadenosine on growth, S-adenosylhomocysteine hydrolase inactivation, and dATP accumulation. Proc Natl Acad Sci USA 77, 4292–4296 (1980). PubMed PMC
Fleischmannova J. et al.. Differential response of Drosophila cell lines to extracellular adenosine. Insect Biochem Mol Biol 42, 321–331 (2012). PubMed
Coulom H. & Birman S. Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J Neurosci 24, 10993–10998 (2004). PubMed PMC
Ivanov V. N. et al.. Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression. Exp Cell Res 314, 1163–1176 (2008). PubMed PMC
Moon D. O. et al.. JNK inhibitor SP600125 promotes the formation of polymerized tubulin, leading to G2/M phase arrest, endoreduplication, and delayed apoptosis. Exp Mol Med 41, 665–677 (2009). PubMed PMC
Misra J. R., Horner M. A., Lam G. & Thummel C. S. Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev 25, 1796–1806 (2011). PubMed PMC
Swinnen J. V., Brusselmans K. & Verhoeven G. Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9, 358–365 (2006). PubMed
Crossley A. C. In Comprehensive Insect Physiology Biochemistry and Pharmacology Vol. 3 (eds Kerkut G. A. & Gilbert L. I.) 487–516 (Pergamon Press, 1985).
Kucerova L. et al.. The Drosophila Chitinase-Like Protein IDGF3 Is Involved in Protection against Nematodes and in Wound Healing. J Innate Immun (2015). PubMed PMC
Zartman J., Restrepo S. & Basler K. A high-throughput template for optimizing Drosophila organ culture with response-surface methods. Development 140, 667–674 (2013). PubMed
Lehrer R. I. & Ganz T. Defensins: endogenous antibiotic peptides from human leukocytes. Ciba Found Symp 171, 276–290, discussion 290–273 (1992). PubMed
Echalier G. Drosophila Cells in Culture. (Academic Press, 1997).
Boison D. et al.. Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci USA 99, 6985–6990 (2002). PubMed PMC
Weavers H. et al.. The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457, 322–326 (2009). PubMed PMC
De Gregorio E., Spellman P. T., Tzou P., Rubin G. M. & Lemaitre B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J 21, 2568–2579 (2002). PubMed PMC
Buchon N., Silverman N. & Cherry S. Immunity in Drosophila melanogaster–from microbial recognition to whole-organism physiology. Nat Rev Immunol 14, 796–810 (2014). PubMed PMC
Hoover D. J. et al.. Expression of the chitinase family glycoprotein YKL-40 in undifferentiated, differentiated and trans-differentiated mesenchymal stem cells. PLoS One 8, e62491 (2013). PubMed PMC
Di Rosa M. & Malaguarnera L. Chitinase 3 Like-1: An Emerging Molecule Involved in Diabetes and Diabetic Complications. Pathobiology 83, 228–242 (2016). PubMed
Low D. et al.. Chitinase 3-like 1 induces survival and proliferation of intestinal epithelial cells during chronic inflammation and colitis-associated cancer by regulating S100A9. Oncotarget 6, 36535–36550 (2015). PubMed PMC
Zurovec M., Kodrik D., Yang C., Sehnal F. & Scheller K. The P25 component of Galleria silk. Mol Gen Genet 257, 264–270 (1998). PubMed
Arefin B. et al.. Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins. J Innate Immun 6, 192–204 (2014). PubMed PMC
Smyth G. K. Limma: linear models for microarray data. 397–420 (Springer, 2005).
Huang da W., Sherman B. T. & Lempicki R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44–57 (2009). PubMed
Carbon S. et al.. AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288–289 (2009). PubMed PMC
De Gregorio E., Spellman P. T., Rubin G. M. & Lemaitre B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci USA 98, 12590–12595 (2001). PubMed PMC