Precision medicine and treatable traits in chronic airway diseases - where do we stand?
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
31644440
DOI
10.1097/mcp.0000000000000639
PII: 00063198-202001000-00007
Knihovny.cz E-zdroje
- MeSH
- bronchiální astma genetika patofyziologie terapie MeSH
- chronická obstrukční plicní nemoc genetika patofyziologie terapie MeSH
- cílená molekulární terapie metody MeSH
- individualizovaná medicína metody trendy MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
PURPOSE OF REVIEW: To provide an update on the implementation of precision medicine, based on treatable traits and mechanisms, in the daily clinical management of chronic airways diseases. RECENT FINDINGS: Recent insights into the complex and heterogeneous nature of chronic airway diseases including chronic obstructive pulmonary disease (COPD) and asthma identified several clinical and inflammatory phenotypes. This shifted the management focus of these diseases away from the prototypic disease labels and paved the way for developing novel targeted therapies.The concept of precision medicine aims to link the right patient to the right treatment, while minimizing the risk of adverse effects. Several treatable features ('treatable traits') have now been identified for these chronic airway diseases, including pulmonary, extra-pulmonary, and psychological/lifestyle/environmental traits. As the next step, innovative detection techniques should clarify underlying mechanisms and molecular pathways of these treatable traits and novel reliable point-of-care (composite) biomarkers to help predict responders to targeted therapies must be developed. SUMMARY: Precision medicine links the right patient to the right treatment. Identification of treatable traits in asthma and COPD will help optimize the treatment approach in these heterogeneous diseases. Furthermore, in-depth identification of underlying molecular pathways and reliable biomarkers in chronic airways diseases to guide targeted treatment in individual patients is in progress.
Zobrazit více v PubMed
Diamant Z, Diderik Boot J, Christian Virchow J. Summing up 100 years of asthma. Respir Med 2007; 101:378–388.
Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nature Med 2012; 18:716–725.
Diamant Z, Gauvreau GM, Cockcroft DW, et al. Inhaled allergen bronchoprovocation tests. J Allergy Clin Immunol 2013; 132:1045–1055.e6.
Price DB, Trudo F, Voorham J, et al. Adverse outcomes from initiation of systemic corticosteroids for asthma: long-term observational study. J Asthma Allergy 2018; 11:193–204.
Rabe KF, Vermeire PA, Soriano JB, Maier WC. Clinical management of asthma in 1999: the Asthma Insights and Reality in Europe (AIRE) study. Eur Respir J 2000; 16:802–807.
Bateman ED, Boushey HA, Bousquet J, et al. Can guideline-defined asthma control be achieved? the gaining optimal asthma control study. Am J Respir Crit Care Med 2004; 170:836–844.
Thamrin C, Frey U, Kaminsky DA, et al. Systems biology and clinical practice in respiratory medicine. The twain shall meet. Am J Respir Crit Care Med 2016; 194:1053–1061.
Silkoff PE, Moore WC, Sterk PJ. Three major efforts to phenotype asthma: severe asthma research program, asthma disease endotyping for personalized therapeutics, and unbiased biomarkers for the prediction of respiratory disease outcome. Clin Chest Med 2019; 40:13–28.
Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nature Med 2012; 18:716.
Sakornsakolpat P, Prokopenko D, Lamontagne M, et al. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet 2019; 51:494–505.
Agusti A, Bel E, Thomas M, et al. Treatable traits: toward precision medicine of chronic airway diseases. Eur Respir J 2016; 47:410–419.
Agusti A, Bafadhel M, Beasley R, et al. Precision medicine in airway diseases: moving to clinical practice. Eur Respir J 2017; 50:1701655.
Chung KF, Adcock IM. Precision medicine for the discovery of treatable mechanisms in severe asthma. Allergy 2019; 74:1649–1659.
Jameson JL, Longo DL. Precision medicine--personalized, problematic, and promising. N Engl J Med 2015; 372:2229–2234.
Simpson AJ, Hekking PP, Shaw DE, et al. Treatable traits in the European U-BIOPRED adult asthma cohorts. Allergy 2019; 74:406–411.
Pavord ID, Agusti A. Blood eosinophil count: a biomarker of an important treatable trait in patients with airway disease. Eur Respir J 2016; 47:1299–1303.
Pavord I, Bahmer T, Braido F, et al. Severe T2-high asthma in the biologics era: European experts’ opinion. Eur Respir Rev 2019; 28.:190054.
Kuo CS, Pavlidis S, Loza M, et al. A transcriptome-driven analysis of epithelial brushings and bronchial biopsies to define asthma phenotypes in U-BIOPRED. Am J Respir Crit Care Med 2017; 195:443–455.
Schofield JP, Burg D, Nicholas B, et al. Stratification of asthma phenotypes by airway proteomic signatures. J Allergy Clin Immunol 2019; 144:70–82.
Woodruff PG, Modrek B, Choy DF, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 2009; 180:388–395.
Erjefalt JS. Unravelling the complexity of tissue inflammation in uncontrolled and severe asthma. Current Opin Pulm Med 2019; 25:79–86.
Corren J. New targeted therapies for uncontrolled asthma. J Allergy Clinical Immunology Pract 2019; 7:1394–1403.
Diamant Z, Aalders W, Parulekar A, et al. Targeting lipid mediators in asthma: time for reappraisal. Curr Opin Pulm Med 2019; 25:121–127.
Kuo CS, Pavlidis S, Loza M, et al. T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur Respir J 2017; 49.:1602135.
Esteban-Gorgojo I, Antolin-Amerigo D, Dominguez-Ortega J, et al. Noneosinophilic asthma: current perspectives. J Asthma Allergy 2018; 11:267–281.
Niven R, Aubier M, Bonta P, et al. European consensus meeting/statement on Bronchial Thermoplasty Who? Where? How? Respir Med 2019; 150:161–164.
Tliba O, Panettieri RA Jr. Paucigranulocytic asthma: uncoupling of airway obstruction from inflammation. J Allergy Clin Immunol 2019; 143:1287–1294.
Brightling CE, Bradding P, Symon FA, et al. Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 2002; 346:1699–1705.
Svenningsen S, Nair P. Asthma endotypes and an overview of targeted therapy for asthma. Front Med (Lausanne) 2017; 4:158.
Blaiss MS, Castro M, Chipps BE, et al. Guiding principles for use of newer biologics and bronchial thermoplasty for patients with severe asthma. Ann Allergy Asthma Immunol 2017; 119:533–540.
Nguyen VQ, Ulrik CS. Measures to reduce maintenance therapy with oral corticosteroid in adults with severe asthma. Allergy Asthma Proc 2016; 37:125–139.
Porsbjerg C, Ulrik C, Skjold T, et al. Nordic consensus statement on the systematic assessment and management of possible severe asthma in adults. Eur Clin Respir J 2018; 5:1440868.
Bateman E, Karpel J, Casale T, et al. Ciclesonide reduces the need for oral steroid use in adult patients with severe, persistent asthma. Chest 2006; 129:1176–1187.
Bel EH, Wenzel SE, Thompson PJ, et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. New Engl J Med 2014; 371:1189–1197.
Bossley CJ, Fleming L, Gupta A, et al. Pediatric severe asthma is characterized by eosinophilia and remodeling without TH2 cytokines. J Allergy Clin Immunol 2012; 129:974–982.