Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9
Language English Country Great Britain, England Media electronic
Document type Journal Article, Multicenter Study, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
MR/R024227/1
Medical Research Council - United Kingdom
PG/13/66/30442
British Heart Foundation - United Kingdom
G0500300
Medical Research Council - United Kingdom
U01 AG016976
NIA NIH HHS - United States
FS/18/23/33512
British Heart Foundation - United Kingdom
G1000143
Medical Research Council - United Kingdom
R01 AG033193
NIA NIH HHS - United States
MR/S011676/1
Medical Research Council - United Kingdom
MR/K006584/1
Medical Research Council - United Kingdom
R024227
Medical Research Council - United Kingdom
RG/13/16/30528
British Heart Foundation - United Kingdom
081081/Z/06/Z
Wellcome Trust - United Kingdom
F32 MH065841
NIMH NIH HHS - United States
K013351
Medical Research Council - United Kingdom
C1298/A8362
Cancer Research UK - United Kingdom
PG/18/50/33837
British Heart Foundation - United Kingdom
FS/14/76/30933
British Heart Foundation - United Kingdom
U24 AG021886
NIA NIH HHS - United States
064947/Z/01/Z
Wellcome Trust - United Kingdom
MR/N003284/1
Medical Research Council - United Kingdom
RG/10/12/28456
British Heart Foundation - United Kingdom
PG/18/5033837
British Heart Foundation - United Kingdom
Department of Health - United Kingdom
MC_UU_12015/1
Medical Research Council - United Kingdom
503480
Medical Research Council - United Kingdom
14136
Cancer Research UK - United Kingdom
AA/18/6/24223
British Heart Foundation - United Kingdom
U01 AG032984
NIA NIH HHS - United States
G0401527
Medical Research Council - United Kingdom
RE/13/1/30181
British Heart Foundation - United Kingdom
R01 HL105756
NHLBI NIH HHS - United States
Arthritis Research UK - United Kingdom
082604/2/07/Z
Wellcome Trust - United Kingdom
Chief Scientist Office - United Kingdom
SP/13/6/30554
British Heart Foundation - United Kingdom
PubMed
31664920
PubMed Central
PMC6820948
DOI
10.1186/s12872-019-1187-z
PII: 10.1186/s12872-019-1187-z
Knihovny.cz E-resources
- Keywords
- Genetic association studies, LDL-cholesterol, Mendelian randomisation, Phenome-wide association scan,
- MeSH
- Anticholesteremic Agents adverse effects therapeutic use MeSH
- Biomarkers blood MeSH
- Genome-Wide Association Study MeSH
- Stroke epidemiology prevention & control MeSH
- Down-Regulation MeSH
- Dyslipidemias blood drug therapy epidemiology genetics MeSH
- Risk Assessment MeSH
- Myocardial Infarction epidemiology prevention & control MeSH
- Serine Proteinase Inhibitors adverse effects therapeutic use MeSH
- Brain Ischemia epidemiology prevention & control MeSH
- Polymorphism, Single Nucleotide * MeSH
- Cholesterol, LDL blood MeSH
- Humans MeSH
- PCSK9 Inhibitors * MeSH
- Proprotein Convertase 9 genetics MeSH
- Randomized Controlled Trials as Topic MeSH
- Risk Factors MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Anticholesteremic Agents MeSH
- Biomarkers MeSH
- Serine Proteinase Inhibitors MeSH
- Cholesterol, LDL MeSH
- PCSK9 Inhibitors * MeSH
- PCSK9 protein, human MeSH Browser
- Proprotein Convertase 9 MeSH
BACKGROUND: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. METHODS: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. RESULTS: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer's disease - outcomes for which large-scale trial data were unavailable. CONCLUSIONS: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate.
Ageing Epidemiology Research Unit School of Public Health Imperial College London UK
Boston University School of Medicine Boston MA USA
Bradford Institute for Health Research Bradford Royal Infirmary Bradford UK
Center for Human Genetics Marshfield Clinic Research Institute Marshfield USA
Center for Lifespan Changes in Brain and Cognition Dept Psychology University of Oslo Oslo Norway
Centre for Cardiovascular Genetics Department of Medicine University College London London UK
Centre for Population Health Sciences The Usher Institute University of Edinburgh Edinburgh UK
Chair of Epidemiology Ludwig Maximilians Universität München UNIKA T Augsburg Augsburg Germany
Children's Hospital of Philadelphia Philadelphia USA
Department of Clinical Epidemiology Leiden University Medical Center Leiden The Netherlands
Department of Epidemiology and Biostatistics Imperial College London London UK
Department of Epidemiology Erasmus University Medical Center Rotterdam the Netherlands
Department of Genomics of Common Disease Imperial College London W12 0NN London United Kingdom
Department of Hematology Erasmus MC Cancer Institute 3075 EA Rotterdam the Netherlands
Department of Internal Medicine A University Medicine Greifswald Greifswald Germany
Department of Internal Medicine B University Medicine Greifswald Greifswald Germany
Department of Internal Medicine University Hospital of Cologne Cologne Germany
Department of Medical Sciences Molecular Epidemiology Uppsala University Uppsala Sweden
Department of Medical Sciences University of Turin Turin Italy
Department of Medicine Imperial College London London UK
Department of Medicine Internal Medicine Lausanne University Hospital Lausanne Switzerland
Department of Neurology Inselspital University Hospital Bern University of Bern Bern Switzerland
Department of Neurology Medical University Innsbruck Innsbruck Austria
Department of Neurosurgery Bethel Clinic Kantensiek 11 33617 Bielefeld Germany
Department of Surgery Nicosia Medical School University of Nicosia Nicosia Cyprus
Department of vascular medicine Academic Medical Center Amsterdam Amsterdam the Netherlands
Department of Vascular Surgery Imperial College London United Kingdom
Department Primary Care and Population Health University College London London UK
Deutsches Krebsforschungszentrum Heidelberg Germany
Division of Genetics and Epidemiology The Institute of Cancer Research London UK
Durrer Center for Cardiovascular Research Netherlands Heart Institute Utrecht The Netherlands
DZHK partner site Greifswald Greifswald Germany
E CA Economics GmbH Berlin Germany
Geriatrics Research Group Charité Universitätsmedizin Berlin 13347 Berlin Germany
Health Data Research UK University College London 222 Euston Road London NW1 2DA UK
Hematology and Transfusion Medicine Department of Laboratory Medicine BMC B13 SE 221 84 Lund Sweden
Hematology Clinic Skåne University Hospital Skåne Sweden
Hunter New England Local Health District Newcastle NSW Australia
INSERM U 1138 Centre de Recherche des Cordeliers Paris France
Institute for Community Medicine University Medicine Greifswald Greifswald Germany
Institute for Social and Economic Research University of Essex Essex UK
Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow G12 8TA UK
Institute of Cardiovascular Science University College London 222 Euston Road London NW1 2DA UK
Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh UK
Institute of Health and Wellbeing University of Glasgow Glasgow G12 8RZ Scotland UK
Institute of Health Informatics University College London 222 Euston Road London NW1 2DA UK
Institute of Human Genetics Lübeck Germany
Institute of Nutritional Science University of Potsdam 14558 Nuthetal Germany
Italian Institute for Genomic Medicine Turin Italy
Kaiser Permanente Washington Health Research Institute Seattle WA USA
l'institut du Thorax INSERM CNRS UNIV Nantes CHU Nantes Nantes France
Lithuanian University of Health Sciences Kaunas Lithuania
National Institute of Public Health Prague Czech Republic
Northern Institute for Cancer Research Newcastle University Newcastle upon Tyne UK
Novosibirsk State Medical University Novosibirsk Russian Federation
Population Health Research Institute Hamilton Ontario Canada
Population Health Research Institute St George's University of London London UK
Population Health Sciences University of Bristol Bristol UK
Population Policy and Practice UCL GOS Institute of Child Health London UK
Postgraduate Program in Epidemiology Federal University of Pelotas Pelotas Brazil
Public Health Program Hunter Medical Research Institute Newcastle NSW Australia
Robertson Centre for Biostatistics University of Glasgow Glasgow UK
Sorbonne Universités UPMC Université Paris 06 UMR S 1127 F 75013 Paris France
South Australian Health and Medical Research Institute Adelaide Australia
The Alan Turing Institute British Library 96 Euston Rd London NW1 2DB UK
The Barts Heart Centre St Bartholomew's Hospital London UK
The Department of Medical Research Bærum Hospital Vestre Viken Hospital Trust Gjettum Norway
The Institut du Cerveau et de la Moelle épinière ICM Paris France
UCL's BHF Research Accelerator Centre London UK
UFR de Médecine Université Paris Diderot Sorbonne Paris Cité Paris France
University College London Farr Institute of Health Informatics London UK
University of Colorado Denver Denver USA
University of Minnesota Minneapolis USA
University of Newcastle Newcastle NSW Australia
Vanderbilt University Nashville USA
Wallenberg Center for Molecular Medicine Lund University Lund Sweden
Wellcome Trust Centre for Human Genetics University of Oxford Oxford England
See more in PubMed
Collaborators CTT (CTT) Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–1278. doi: 10.1016/S0140-6736(05)67394-1. PubMed DOI
Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe sed to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–2397. doi: 10.1056/NEJMoa1410489. PubMed DOI
Bohula EA, Wiviott SD, Giugliano RP, Blazing MA, Park J-G, Murphy SA, et al. Prevention of stroke with the addition of ezetimibe to statin therapy in patients with acute coronary syndrome in IMPROVE-IT. Circulation. 2017. 10.1161/CIRCULATIONAHA.117.029095. PubMed
Cohen JC, Boerwinkle E, Mosley TH, Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–1272. doi: 10.1056/NEJMoa054013. PubMed DOI
Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol. 2010;55:2833–2842. doi: 10.1016/j.jacc.2010.02.044. PubMed DOI
Schmidt AF, Pearce LS, Wilkins JT, Overington JP, Hingorani A, Casas JP. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2015;(6):CD011748. 10.1002/14651858.CD011748. PubMed PMC
Schwartz GG, Steg, Gabriel P, Szarek M, Bhatt DL, Bittner VA, Diaz R, Edelberg JM, Goodman SG, Hanotin C, Harrington RA, Jukema JW, Lecorps G, Mahaffey KW, Moryusef A, Pordy R, Quintero K, Roe MT, Sasiela WJ, Tamby JF, Tricoci P, White HD, Zeiher AM. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med. 2018;379:2097-107. 10.1056/NEJMoa1801174. PubMed
Hingorani A, Humphries S. Nature’s randomised trials. Lancet. 2005;366(9501):1906–1908. doi: 10.1016/S0140-6736(05)67767-7. PubMed DOI
Swerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JEL, Shah T, et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: Evidence from genetic analysis and randomised trials. Lancet. 2015;385:351–361. doi: 10.1016/S0140-6736(14)61183-1. PubMed DOI PMC
Swerdlow DI, Hingorani AD, Casas JP, Consortium IMR. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet. 2012;379(9822):1214–1224. doi: 10.1016/S0140-6736(12)60110-X. PubMed DOI PMC
Wensley F, Gao P, Burgess S, Kaptoge S, Di Angelantonio E, Shah T, et al. Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ. 2011;342:d548. doi: 10.1136/bmj.d548. PubMed DOI PMC
Casas JP, Ninio E, Panayiotou A, Palmen J, Cooper JA, Ricketts SL, et al. PLA2G7 genotype, lipoprotein-associated phospholipase A2 activity, and coronary heart disease risk in 10 494 cases and 15 624 controls of european ancestry. Circulation. 2010;121(21):2284–2293. doi: 10.1161/CIRCULATIONAHA.109.923383. PubMed DOI PMC
Sofat R, Hingorani AD, Smeeth L, Humphries SE, Talmud PJ, Cooper J, et al. Separating the mechanism-based and off-target actions of cholesteryl ester transfer protein inhibitors with CETP gene polymorphisms. Circulation. 2010;121:52–62. doi: 10.1161/CIRCULATIONAHA.109.865444. PubMed DOI PMC
Schmidt AF, Swerdlow DDI, Holmes MMV, Patel RS, Fairhurst-Hunter Z, Lyall DM, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2016;0(2):735–742. PubMed PMC
Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40:161–169. doi: 10.1038/ng.76. PubMed DOI PMC
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–315. doi: 10.1038/ng.2892. PubMed DOI PMC
Schmidt AF, Pearce LS, Wilkins JT, Overington JP, Hingorani A, Casas JP. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2015;(6):CD011748. 10.1002/14651858.CD011748. PubMed PMC
Tomlinson B, Hu M, Zhang Y, Chan P, Liu ZM. Alirocumab for the treatment of hypercholesterolemia. Expert Opin Biol Ther. 2017;17:633–643. doi: 10.1080/14712598.2017.1305354. PubMed DOI
R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
Dias CS, Shaywitz AJ, Wasserman SM, Smith BP, Gao B, Stolman DS, et al. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol. 2012;60(19):1888–1898. doi: 10.1016/j.jacc.2012.08.986. PubMed DOI
de Carvalho LSF, Campos AM, Sposito AC. Proprotein convertase Subtilisin/Kexin type 9 (PCSK9) inhibitors and incident type 2 diabetes mellitus: a systematic review and meta-analysis with over 96,000 patient-years. Diabetes Care. 2017. PubMed
Lotta LA, Sharp SJ, Burgess S, Perry JRB, Stewart ID, Willems SM, et al. Association between low-density lipoprotein cholesterol–lowering genetic variants and risk of type 2 diabetes. JAMA. 2016;316(13):1383. doi: 10.1001/jama.2016.14568. PubMed DOI PMC
Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375(22):2144–2153. doi: 10.1056/NEJMoa1604304. PubMed DOI
Fall T, Xie W, Poon W, Yaghootkar H, Magi R, Knowles JW, et al. Using genetic variants to assess the relationship between circulating lipids and type 2 diabetes. Diabetes. 2015;64(7):2676–2684. doi: 10.2337/db14-1710. PubMed DOI
White J, Swerdlow DI, Preiss D, Fairhurst-Hunter Z, Keating BJ, Asselbergs FW, et al. Association of Lipid Fractions with Risks for coronary artery disease and diabetes. JAMA Cardiol. 2016;366(6):1108–1118. PubMed PMC
Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735–742. doi: 10.1016/S0140-6736(09)61965-6. PubMed DOI
Smith GD, Ebrahim S. “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22. doi: 10.1093/ije/dyg070. PubMed DOI
Burgess S, Zuber V, Valdes-Marquez E, Sun BB, Hopewell JC. Mendelian randomization with fine-mapped genetic data: choosing from large numbers of correlated instrumental variables. Genet Epidemiol. 2017;41(8):714–725. doi: 10.1002/gepi.22077. PubMed DOI PMC
Burgess S, Butterworth A, Malarstig A, Thompson SG. Use of Mendelian randomisation to assess potential benefit of clinical intervention. BMJ. 2012;345(nov06 1):e7325. doi: 10.1136/bmj.e7325. PubMed DOI
Heart Protection Study Collaborative Group. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20 536 people with cerebrovascular disease or other high-risk conditions. Lancet. 2004;363(9411):757–67. PubMed
Amarenco P, Bogousslavsky J, Callahan A, Goldstein LB, Hennerici M, Rudolph AE, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006;355(6):549–559. doi: 10.1056/NEJMoa061894. PubMed DOI
Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the evidence for the effi cacy and safety of statin therapy. Lancet. 2016;388(10059):2532–2561. doi: 10.1016/S0140-6736(16)31357-5. PubMed DOI
Giugliano RP, Mach F, Zavitz K, Kurtz C, Im K, Kanevsky E, et al. Cognitive function in a randomized trial of Evolocumab. N Engl J Med. 2017;377(7):633–643. doi: 10.1056/NEJMoa1701131. PubMed DOI
Zhang L, Song K, Zhu M, Shi J, Zhang H, Xu L, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in lipid metabolism, atherosclerosis and ischemic stroke. Int J Neurosci. 2016;126(8):675–680. PubMed
Cariou B, Si-Tayeb K, Le May C. Role of PCSK9 beyond liver involvement. Curr Opin Lipidol. 2015;26(3):155–161. doi: 10.1097/MOL.0000000000000180. PubMed DOI
Hu Y-JYJ, Schmidt AFAF, Dudbridge F, Holmes MVMV, Brophy JM, Tragante V, et al. Impact of selection Bias on estimation of subsequent event risk. Circ Cardiovasc Genet. 2017;10(5):e001616. doi: 10.1161/CIRCGENETICS.116.001616. PubMed DOI PMC
Zewinger S, Kleber ME, Tragante V, McCubrey RO, Schmidt AF, Direk K, et al. Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study. Lancet Diabetes Endocrinol. 2017;5(7):534–543. doi: 10.1016/S2213-8587(17)30096-7. PubMed DOI PMC
Patel RS, Asselbergs FW. The GENIUS-CHD consortium. Eur Heart J. 2015;36(40):2674–2676. PubMed