Protein Prenylation in Plant Stress Responses
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NPUI-LO1417
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31671559
PubMed Central
PMC6866125
DOI
10.3390/molecules24213906
PII: molecules24213906
Knihovny.cz E-zdroje
- Klíčová slova
- plants, prenylated proteins, protein prenyl transferases, stress,
- MeSH
- biotechnologie MeSH
- fyziologický stres * MeSH
- prenylace proteinů * MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny metabolismus MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- rostlinné proteiny MeSH
Protein prenylation is one of the most important posttranslational modifications of proteins. Prenylated proteins play important roles in different developmental processes as well as stress responses in plants as the addition of hydrophobic prenyl chains (mostly farnesyl or geranyl) allow otherwise hydrophilic proteins to operate as peripheral lipid membrane proteins. This review focuses on selected aspects connecting protein prenylation with plant responses to both abiotic and biotic stresses. It summarizes how changes in protein prenylation impact plant growth, deals with several families of proteins involved in stress response and highlights prominent regulatory importance of prenylated small GTPases and chaperons. Potential possibilities of these proteins to be applicable for biotechnologies are discussed.
Zobrazit více v PubMed
Maurer-Stroh S., Washietl S., Eisenhaber F. Protein prenyltransferases: anchor size, pseudogenes and parasites. Biol. Chem. 2003;384:977–989. doi: 10.1515/BC.2003.110. PubMed DOI
Palsuledesai C.C., Distefano M.D. Protein prenylation: enzymes, therapeutics, and biotechnology applications. ACS Chem Biol. 2015;10:51–62. doi: 10.1021/cb500791f. PubMed DOI PMC
Turnbull D., Hemsley P.A. Fats and function: protein lipid modifications in plant cell signalling. Curr. Opin. Plant Biol. 2017;40:63–70. doi: 10.1016/j.pbi.2017.07.007. PubMed DOI
Krute C.N., Carroll R.K., Rivera F.E., Weiss A., Young R.M., Shilling A., Botlani M., Varma S., Baker B.J., Shaw L.N. The disruption of prenylation leads to pleiotropic rearrangements in cellular behavior in Staphylococcus aureus. Mol. Mar. 2015;95:819–832. doi: 10.1111/mmi.12900. PubMed DOI PMC
Suazo K.F., Schaber C., Palsuledesai C.C., Odom John A.R., Distefano M.D. Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue. Sci Rep. 2016;6:38615. doi: 10.1038/srep38615. PubMed DOI PMC
Andrews M., Huizinga D.H., Crowell D.N. The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes. BMC Plant Biol. 2010;10:118. doi: 10.1186/1471-2229-10-118. PubMed DOI PMC
Desnoyers L., Seabra M.C. Single prenyl-binding site on protein prenyl transferases. Proc. Natl. Acad. Sci. USA. 1998;95:12266–12270. doi: 10.1073/pnas.95.21.12266. PubMed DOI PMC
Long S.B., Casey P.J., Beese L.S. Reaction path of protein farnesyltransferase at atomic resolution. Nature. 2002;419:645–650. doi: 10.1038/nature00986. PubMed DOI
Trueblood C.E., Boyartchuk V.L., Picologlou E.A., Rozema D., Poulter C.D., Rine J. The CaaX proteases, Afc1p and Rce1p, have overlapping but distinct substrate specificities. Mol. Cell Biol. 2000;20:4381–4392. doi: 10.1128/MCB.20.12.4381-4392.2000. PubMed DOI PMC
Bergo M.O., Leung G.K., Ambroziak P., Otto J.C., Casey P.J., Gomes A.Q., Seabra M.C., Young S.G. Isoprenylcysteine carboxyl methyltransferase deficiency in mice. J. Biol. Chem. 2001;276:5841–5845. doi: 10.1074/jbc.C000831200. PubMed DOI
Cadiñanos J., Varela I., Mandel D.A., Schmidt W.K., Díaz-Perales A., López-Otín C., Freije J.M. AtFACE-2, a functional prenylated protein protease from Arabidopsis thaliana related to mammalian Ras-converting enzymes. J. Biol. Chem. 2003;278:42091–42097. doi: 10.1074/jbc.M306700200. PubMed DOI
Bracha-Drori K., Shichrur K., Lubetzky T.C., Yalovsky S. Functional analysis of Arabidopsis postprenylation CaaX processing enzymes and their function in subcellular protein targeting. Plant. Physiol. 2008;148:119–131. doi: 10.1104/pp.108.120477. PubMed DOI PMC
Alexandrov K., Simon I., Yurchenko V., Iakovenko A., Rostkova E., Scheidig A.J., Goody R.S. Characterization of the ternary complex between Rab7, REP-1 and Rab geranylgeranyl transferase. Eur. J. Biochem. 1999;265:160–170. doi: 10.1046/j.1432-1327.1999.00699.x. PubMed DOI
Wilson A.L., Erdman R.A., Castellano F., Maltese W.A. Prenylation of Rab8 GTPase by type I and type II geranylgeranyl transferases. Biochem. J. 1998;333:497–504. doi: 10.1042/bj3330497. PubMed DOI PMC
Alexandrov K., Horiuchi H., Steele-Mortimer O., Seabra M.C., Zerial M. Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated Rab proteins to their target membranes. EMBO J. 1994;13:5260–5273. doi: 10.1002/j.1460-2075.1994.tb06860.x. PubMed DOI PMC
Hála M., Eliás M., Zárský V. A specific feature of the angiosperm Rab escort protein (REP) and evolution of the REP/GDI superfamily. J. Mol. Biol. 2005;348:1299–1313. doi: 10.1016/j.jmb.2005.02.002. PubMed DOI
Konstantinopoulos P.A., Karamouzis M.V., Papavassiliou A.G. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat. Rev. Drug Discov. 2007;6:541–555. doi: 10.1038/nrd2221. PubMed DOI
Gutkowska M., Swiezewska E. Structure, regulation and cellular functions of Rab geranylgeranyl transferase and its cellular partner Rab Escort Protein. Mol. Membr. Biol. 2012;29:243–256. doi: 10.3109/09687688.2012.693211. PubMed DOI
Cutler S., Ghassemian M., Bonetta D., Cooney S., McCourt P. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science. 1996;273:1239–1241. doi: 10.1126/science.273.5279.1239. PubMed DOI
Bonetta D., Bayliss P., Sun S., Sage T., McCourt P. Farnesylation is involved in meristem organization in Arabidopsis. Planta. 2000;211:182–190. doi: 10.1007/s004250000283. PubMed DOI
Yalovsky S., Rodríguez-Concepción M., Bracha K., Toledo-Ortiz G., Gruissem W. Prenylation of the floral transcription factor APETALA1 modulates its function. Plant Cell. 2000;12:1257–1266. doi: 10.1105/tpc.12.8.1257. PubMed DOI PMC
Pei Z.M., Ghassemian M., Kwak C.M., McCourt P., Schroeder J.I. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science. 1998;282:287–290. doi: 10.1126/science.282.5387.287. PubMed DOI
Allen G.J., Murata Y., Chu S.P., Nafisi M., Schroeder J.I. Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2. Plant Cell. 2002;14:1649–1662. doi: 10.1105/tpc.010448. PubMed DOI PMC
Nakashima K., Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development. Plant Cell Rep. 2013;32:959–970. doi: 10.1007/s00299-013-1418-1. PubMed DOI
Barghetti A., Sjögren L., Floris M., Paredes E.B., Wenkel S., Brodersen P. Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance. Genes Dev. 2017;31:2282–2295. doi: 10.1101/gad.301242.117. PubMed DOI PMC
Northey J.G., Liang S., Jamshed M., Deb S., Foo E., Reid J.B., McCourt P., Samuel M.A. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat. Plants. 2016;2:16114. doi: 10.1038/nplants.2016.114. PubMed DOI
Wu J.R., Wang L.C., Lin Y.R., Weng C.P., Yeh C.H., Wu S.J. The Arabidopsis heat-intolerant 5 hit5)/enhanced response to aba 1 (era1) mutant reveals the crucial role of protein farnesylation in plant responses to heat stress. New Phytol. 2017;213:1181–1193. doi: 10.1111/nph.14212. PubMed DOI
Johnson C.D., Chary S.N., Chernoff E.A., Zeng Q., Running M.P., Crowell D.N. Protein geranylgeranyltransferase I is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis. Plant Physiol. 2005;139:722–733. doi: 10.1104/pp.105.065045. PubMed DOI PMC
Thole J.M., Perroud P.F., Quatrano R.S., Running M.P. Prenylation is required for polar cell elongation, cell adhesion, and differentiation in Physcomitrella patens. Plant J. 2014;78:441–451. doi: 10.1111/tpj.12484. PubMed DOI
Running M.P., Lavy M., Sternberg H., Galichet A., Gruissem W., Hake S., Ori N., Yalovsky S. Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc. Natl. Acad. Sci. USA. 2004;101:7815–7820. doi: 10.1073/pnas.0402385101. PubMed DOI PMC
Chai S., Ge F.R., Feng Q.N., Li S., Zhang Y. PLURIPETALA mediates ROP2 localization and stability in parallel to SCN1 but synergistically with TIP1 in root hairs. Plant J. 2016;86:413–425. doi: 10.1111/tpj.13179. PubMed DOI
Wojtas M., Swiezewski S., Sarnowski T.J., Plochocka D., Chelstowska A., Tolmachova T., Swiezewska E. Cloning and characterization of Rab Escort Protein (REP) from Arabidopsis thaliana. Cell Biol. Int. 2007;31:246–251. doi: 10.1016/j.cellbi.2006.04.011. PubMed DOI
Hála M., Soukupová H., Synek L., Zárský V. Arabidopsis RAB geranylgeranyl transferase beta-subunit mutant is constitutively photomorphogenic, and has shoot growth and gravitropic defects. Plant J. 2010;62:615–627. doi: 10.1111/j.1365-313X.2010.04172.x. PubMed DOI
Gutkowska M., Wnuk M., Nowakowska J., Lichocka M., Stronkowski M.M., Swiezewska E. Rab geranylgeranyl transferase β subunit is essential for male fertility and tip growth in Arabidopsis. J. Exp. Bot. 2015;66:213–224. doi: 10.1093/jxb/eru412. PubMed DOI PMC
Running M.P. The role of lipid post-translational modification in plant developmental processes. Front. Plant Sci. 2014;5:50. doi: 10.3389/fpls.2014.00050. PubMed DOI PMC
Zhu J.K., Bressan R.A., Hasegawa P.M. Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature. Proc. Natl. Acad. Sci. USA. 1993;90:8557–8561. doi: 10.1073/pnas.90.18.8557. PubMed DOI PMC
Dykema P.E., Sipes P.R., Marie A., Biermann B.J., Crowell D.N., Randall S.K. A new class of proteins capable of binding transition metals. Plant Mol. Biol. 1999;41:139–150. doi: 10.1023/A:1006367609556. PubMed DOI
Gao W., Xiao S., Li H.Y., Tsao S.W., Chye M.L. Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6. New Phytol. 2009;181:89–102. doi: 10.1111/j.1469-8137.2008.02631.x. PubMed DOI
Suzuki N., Yamaguchi Y., Koizumi N., Sano H. Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. Plant J. 2002;32:165–173. doi: 10.1046/j.1365-313X.2002.01412.x. PubMed DOI
Barth O., Zschiesche W., Siersleben S., Humbeck K. Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence. Physiol. Plant. 2004;121:282–293. doi: 10.1111/j.0031-9317.2004.00325.x. PubMed DOI
Barth O., Vogt S., Uhlemann R., Zschiesche W., Humbeck K. Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol. Biol. 2009;69:213–226. doi: 10.1007/s11103-008-9419-0. PubMed DOI
Zschiesche W., Barth O., Daniel K., Böhme S., Rausche J., Humbeck K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol. 2015;207:1084–1096. doi: 10.1111/nph.13419. PubMed DOI
Yadav D.K., Islam S.M., Tuteja N. Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress. Plant Signal. Behav. 2012;7:733–740. doi: 10.4161/psb.20356. PubMed DOI PMC
Urano D., Colaneri A., Jones A.M. Gα modulates salt-induced cellular senescence and cell division in rice and maize. J. Exp. Bot. 2014;65:6553–6561. doi: 10.1093/jxb/eru372. PubMed DOI PMC
Rodríguez-Concepción M., Yalovsky S., Zik M., Fromm H., Gruissem W. The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO J. 1999;18:1996–2007. doi: 10.1093/emboj/18.7.1996. PubMed DOI PMC
Dutilleul C., Ribeiro I., Blanc N., Nezames C.D., Deng X.W., Zglobicki P., Palacio Barrera A.M., Atehortùa L., Courtois M., Labas V., et al. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis. Plant Cell Environ. 2016;39:185–198. doi: 10.1111/pce.12605. PubMed DOI
Miao H., Sun P., Liu J., Wang J., Xu B., Jin Z. Overexpression of a Novel ROP Gene from the Banana (MaROP5g) Confers Increased Salt Stress Tolerance. Int J. Mol. Sci. 2018;19:3108. doi: 10.3390/ijms19103108. PubMed DOI PMC
Li C., Lu H., Li W., Yuan M., Fu Y. A ROP2-RIC1 pathway fine-tunes mikrotubule reorganization for salt tolerance in Arabidopsis. Plant Cell Environ. 2017;40:1127–1142. doi: 10.1111/pce.12905. PubMed DOI
Zheng Z.L., Nafisi M., Tam A., Li H., Crowell D.N., Chary S.N., Schroeder J.I., Shen J., Yang Z. Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell. 2002;14:2787–2797. doi: 10.1105/tpc.005611. PubMed DOI PMC
Schultheiss H., Hensel G., Imani J., Broeders S., Sonnewald U., Kogel K.H., Kumlehn J., Hückelhoven R. Ectopic expression of constitutively activated RACB in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiol. 2005;139:353–362. doi: 10.1104/pp.105.066613. PubMed DOI PMC
Mazel A., Leshem Y., Tiwari B.S., Levine A. Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e) Plant Physiol. 2004;134:118–128. doi: 10.1104/pp.103.025379. PubMed DOI PMC
Peng X., Ding X., Chang T., Wang Z., Liu R., Zeng X., Cai Y., Zhu Y. Overexpression of a Vesicle Trafficking Gene, OsRab7, enhances salt tolerance in rice. Sci. World J. 2014;2014:483526. doi: 10.1155/2014/483526. PubMed DOI PMC
Poraty-Gavra L., Zimmermann P., Haigis S., Bednarek P., Hazak O., Stelmakh O.R., Sadot E., Schulze-Lefert P., Gruissem W., Yalovsky S. The Arabidopsis Rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. Plant Physiol. 2013;161:1172–1188. doi: 10.1104/pp.112.213165. PubMed DOI PMC
Wang Z., Li X. IAN/GIMAPs are conserved and novel regulators in vertebrates and angiosperm plants. Plant Signal. Behav. 2009;4:165–167. doi: 10.4161/psb.4.3.7722. PubMed DOI PMC
Sjögren L., Floris M., Barghetti A., Völlmy F., Linding R., Brodersen P. Farnesylated heat shock protein 40 is a component of membrane-bound RISC in Arabidopsis. J. Biol. Chem. 2018;293:16608–16622. doi: 10.1074/jbc.RA118.003887. PubMed DOI PMC
de Abreu-Neto J.B., Turchetto-Zolet A.C., de Oliveira L.F., Zanettini M.H., Margis-Pinheiro M. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J. 2013;280:1604–1616. doi: 10.1111/febs.12159. PubMed DOI
Tehseen M., Cairns N., Sherson S., Cobbett C.S. Metallochaperone-like genes in Arabidopsis thaliana. Metallomics. 2010;2:556–564. doi: 10.1039/c003484c. PubMed DOI
Cowan G.H., Roberts A.G., Jones S., Kumar P., Kalyandurg P.B., Gil J.F., Savenkov E.I., Hemsley P.A., Torrance L. Potato Mop-Top Virus Co-Opts the Stress Sensor HIPP26 for Long-Distance Movement. Plant Physiol. 2018;176:2052–2070. doi: 10.1104/pp.17.01698. PubMed DOI PMC
Urano D., Miura K., Wu Q., Iwasaki Y., Jackson D., Jones A.M. Plant Morphology of Heterotrimeric G Protein Mutants. Plant Cell Physiol. 2016;57:437–445. doi: 10.1093/pcp/pcw002. PubMed DOI PMC
Peng P., Gao Y., Li Z., Yu Y., Qin H., Guo Y., Huang R., Wang J. Proteomic Analysis of a Rice Mutant sd58 Possessing a Novel d1 Allele of Heterotrimeric G Protein Alpha Subunit (RGA1) in Salt Stress with a Focus on ROS Scavenging. Int. J. Mol. Sci. 2019;20:167. doi: 10.3390/ijms20010167. PubMed DOI PMC
Liu C., Xu Y., Feng Y., Long D., Cao B., Xiang Z., Zhao A. Ectopic Expression of Mulberry G-Proteins Alters Drought and Salt Stress Tolerance in Tobacco. Int. J. Mol. Sci. 2018;20:89. doi: 10.3390/ijms20010089. PubMed DOI PMC
Rodríguez-Concepción M., Toledo-Ortiz G., Yalovsky S., Caldelari D., Gruissem W. Carboxyl-methylation of prenylated calmodulin CaM53 is required for efficient plasma membrane targeting of the protein. Plant J. 2000;24:775–784. doi: 10.1046/j.1365-313x.2000.00924.x. PubMed DOI
Sorek N., Gutman O., Bar E., Abu-Abied M., Feng X., Running M.P., Lewinsohn E., Ori N., Sadot E., Henis Y.I., et al. Differential effects of prenylation and s-acylation on type I and II ROPS membrane interaction and function. Plant Physiol. 2011;155:706–720. doi: 10.1104/pp.110.166850. PubMed DOI PMC
Li Z., Kang J., Sui N., Liu D. ROP11 GTPase is a negative regulator of multiple ABA responses in Arabidopsis. J. Integr. Plant Biol. 2012;54:169–179. doi: 10.1111/j.1744-7909.2012.01100.x. PubMed DOI
Ueda T., Yamaguchi M., Uchimiya H., Nakano A. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J. 2001;20:4730–4741. doi: 10.1093/emboj/20.17.4730. PubMed DOI PMC
Ebine K., Fujimoto M., Okatani Y., Nishiyama T., Goh T., Ito E., Dainobu T., Nishitani A., Uemura T., Sato M.H., et al. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat. Cell Biol. 2011;13:853–859. doi: 10.1038/ncb2270. PubMed DOI
Inada N., Betsuyaku S., Shimada T.L., Ebine K., Ito E., Kutsuna N., Hasezawa S., Takano Y., Fukuda H., Nakano A., et al. Modulation of Plant RAB GTPase-Mediated Membrane Trafficking Pathway at the Interface Between Plants and Obligate Biotrophic Pathogens. Plant Cell Physiol. 2016;57:1854–1864. doi: 10.1093/pcp/pcw107. PubMed DOI
Asaoka R., Uemura T., Ito J., Fujimoto M., Ito E., Ueda T., Nakano A. Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J. 2013;73:240–249. doi: 10.1111/tpj.12023. PubMed DOI
Sivars U., Aivazian D., Pfeffer SR. Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature. 2003;425:856–859. doi: 10.1038/nature02057. PubMed DOI
Lee M.H., Yoo Y.J., Kim D.H., Hanh N.H., Kwon Y., Hwang I. The Prenylated Rab GTPase Receptor PRA1.F4 Contributes to Protein Exit from the Golgi Apparatus. Plant Physiol. 2017;174:1576–1594. doi: 10.1104/pp.17.00466. PubMed DOI PMC
Opalski K.S., Schultheiss H., Kogel K.H., Hückelhoven R. The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp.hordei. Plant J. 2005;41:291–303. doi: 10.1111/j.1365-313X.2004.02292.x. PubMed DOI
Wang Y., Ying J., Kuzma M., Chalifoux M., Sample A., McArthur C., Uchacz T., Sarvas C., Wan J., Dennis D.T., et al. Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J. 2005;43:413–424. doi: 10.1111/j.1365-313X.2005.02463.x. PubMed DOI
Wang Y., Beaith M., Chalifoux M., Ying J., Uchacz T., Sarvas C., Griffiths R., Kuzma M., Wan J., Huang Y. Shoot-specific down-regulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola. Mol. Plant. 2009;2:191–200. doi: 10.1093/mp/ssn088. PubMed DOI PMC
Loraine A.E., Yalovsky S., Fabry S., Gruissem W. Tomato Rab1A homologs as molecular tools for studying Rab geranylgeranyl transferase in plant cells. Plant Physiol. 1996;110:1337–1347. doi: 10.1104/pp.110.4.1337. PubMed DOI PMC
Lu C., Zainal Z., Tucker G.A., Lycett G.W. Developmental abnormalities and reduced fruit softening in tomato plants expressing an antisense Rab11 GTPase gene. Plant Cell. 2000;13:1819–1833. doi: 10.1105/TPC.010069. PubMed DOI PMC