Hybrid Shape Memory Alloy-Based Nanomechanical Resonators for Ultrathin Film Elastic Properties Determination and Heavy Mass Spectrometry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31683696
PubMed Central
PMC6862155
DOI
10.3390/ma12213593
PII: ma12213593
Knihovny.cz E-zdroje
- Klíčová slova
- Q-factor, Young’s modulus, mass spectrometry, nanomechanics, phase transformation, resonator, shape memory alloys,
- Publikační typ
- časopisecké články MeSH
Micro-/nanomechanical resonators are often used in material science to measure the elastic properties of ultrathin films or mass spectrometry to estimate the mass of various chemical and biological molecules. Measurements with these sensors utilize changes in the resonant frequency of the resonator exposed to an investigated quantity. Their sensitivities are, therefore, determined by the resonant frequency. The higher resonant frequency and, correspondingly, higher quality factor (Q-factor) yield higher sensitivity. In solution, the resonant frequency (Q-factor) decreases causing a significant lowering of the achievable sensitivity. Hence, the nanomechanical resonator-based sensors mainly operate in a vacuum. Identification by nanomechanical resonator also requires an additional reference measurement on the identical unloaded resonator making experiments, due to limiting achievable accuracies in current nanofabrication processes, yet challenging. In addition, the mass spectrometry by nanomechanical resonator can be routinely performed for light analytes (i.e., analyte is modelled as a point particle). For heavy analytes such as bacteria clumps neglecting their stiffness result in a significant underestimation of determined mass values. In this work, we demonstrate the extraordinary capability of hybrid shape memory alloy (SMA)-based nanomechanical resonators to i) notably tune the resonant frequencies and improve Q-factor of the resonator immersed in fluid, ii) determine the Young's (shear) modulus of prepared ultrathin film only from frequency response of the resonator with sputtered film, and iii) perform heavy analyte mass spectrometry by monitoring shift in frequency of just a single vibrational mode. The procedures required to estimate the Young's (shear) modulus of ultrathin film and the heavy analyte mass from observed changes in the resonant frequency caused by a phase transformation in SMA are developed and, afterward, validated using numerical simulations. The present results demonstrate the outstanding potential and capability of high frequency operating hybrid SMA-based nanomechanical resonators in sensing applications that can be rarely achieved by current nanomechanical resonator-based sensors.
Drážní revize s r o Místecká 1120 103 70300 Ostrava Vitkovice Czech Republic
Institute of Physics Czech Academy of Sciences Na Slovance 2 18221 Prague Czech Republic
School of Sciences Harbin Institute of Technology Shenzhen Shenzhen 518055 Guangdong China
Zobrazit více v PubMed
Zhang X.C., Myers E.B., Sader J.E., Roukes M.L. Nanomechanical Torsional Resonators for Frequency-Shift Infrared Thermal Sensing. Nano Lett. 2013;13:1528–1534. doi: 10.1021/nl304687p. PubMed DOI
Fedorchenko A.I., Stachiv I., Wang W.-C. Method of the viscosity measurement by means of the vibrating micro-/nano-mechanical resonators. Flow Meas. Instrum. 2013;32:84–89. doi: 10.1016/j.flowmeasinst.2013.03.003. DOI
Papi M., Arcovito G., De Spirito M., Vassalli M., Tiribilli B. Fluid viscosity determination by means of uncalibrated atomic force microscopy cantilevers. Appl. Phys. Lett. 2006;88:194102. doi: 10.1063/1.2200588. DOI
Mamin H.J., Rugar D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 2001;79:3358–3360. doi: 10.1063/1.1418256. DOI
Moser J., Güttinger J., Eichler A., Esplandiu M.J., Liu D.E., Dykman M.I., Bachtold A. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotechnol. 2013;8:493–496. doi: 10.1038/nnano.2013.97. PubMed DOI
Stachiv I., Fang T.-H., Jeng Y.-R. Mass detection in viscous fluid utilizing vibrating micro- and nanomechanical mass sensors under applied axial tensile force. Sensors. 2015;15:19351–19368. doi: 10.3390/s150819351. PubMed DOI PMC
Naik A.K., Hanay M.S., Hiebert W.K., Feng X.L., Roukes M.L. Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 2009;4:445–450. doi: 10.1038/NNANO.2009.152. PubMed DOI PMC
Stachiv I. On the Nanoparticle or Macromolecule Mass Detection in Fluid Utilizing Vibrating Micro-/Nanoresonators Including Carbon Nanotubes. Sens. Lett. 2013;11:613–616. doi: 10.1166/sl.2013.2926. DOI
Schmid S., Dohn S., Boisen A. Real-Time Particle Mass Spectrometry Based on Resonant Micro Strings. Sensors. 2010;10:8092–8100. doi: 10.3390/s100908092. PubMed DOI PMC
Stachiv I., Fedorchenko A.I., Chen Y.-L. Mass detection by means of the vibrating nanomechanical resonators. Appl. Phys. Lett. 2012;100:93110. doi: 10.1063/1.3691195. DOI
Ruz J.J., Tamayo J., Pini V., Kosaka P.M., Calleja M. Physics of Nanomechanical Spectrometry of Viruses. Sci. Rep. 2014;4:6051. doi: 10.1038/srep06051. PubMed DOI PMC
Ilic B., Krylov S., Craighead H.G. Young’s modulus and density measurements of thin atomic layer deposited films using resonant nanomechanics. J. Appl. Phys. 2010;108:44317. doi: 10.1063/1.3474987. DOI
Stachiv I., Zapoměl J., Chen Y.-L. Simultaneous determination of the elastic modulus and density/thickness of ultrathin films utilizing micro-/nanoresonators under applied axial force. J. Appl. Phys. 2014;115:124304. doi: 10.1063/1.4869415. DOI
Stachiv I., Vokoun D., Jeng Y.-R. Measurement of Young’s modulus and volumetric mass density/thickness of ultrathin films utilizing resonant based mass sensors. Appl. Phys. Lett. 2014;104:83102. doi: 10.1063/1.4866417. DOI
Guo X.-G., Zhou Z.-F., Sun C., Li W.-H., Huang Q.-A. A Simple Extraction Method of Young’s Modulus for Multilayer Films in MEMS Applications. Micromachines. 2017;8:201. doi: 10.3390/mi8070201. PubMed DOI PMC
Colombi P., Bergese P., Bontempi E., Borgese L., Federici S., Keller S.S., Boisen A., Depero L.E. Sensitive determination of the Young’s modulus of thin films by polymeric microcantilevers. Meas. Sci. Technol. 2013;24:125603. doi: 10.1088/0957-0233/24/12/125603. DOI
Stachiv I., Kuo C.-Y., Fang T.-H., Mortet V. Simultaneous determination of the residual stress, elastic modulus, density and thickness of ultrathin film utilizing vibrating doubly clamped micro-/nanobeams. AIP Adv. 2016;6:045005. doi: 10.1063/1.4947031. DOI
Stachiv I., Gan L. Simple Non-Destructive Method of Ultrathin Film Material Properties and Generated Internal Stress Determination Using Microcantilevers Immersed in Air. Coatings. 2019;9:486. doi: 10.3390/coatings9080486. DOI
Lee J., Wang Z., He K., Yang R., Shan J., Feng P.X.-L. Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range. Sci. Adv. 2018;4:eaao6653. doi: 10.1126/sciadv.aao6653. PubMed DOI PMC
Matheny M.H., Emenheiser J., Fon W., Chapman A., Salova A., Rohden M., Li J., De Badyn M.H., Pósfai M., Duenas-Osorio L., et al. Exotic states in a simple network of nanoelectromechanical oscillators. Science. 2019;363:eaav7932. doi: 10.1126/science.aav7932. PubMed DOI
Hanay M.S., Kelber S.I., O’Connell C.D., Mulvaney P., Sader J.E., Roukes M.L. Inertial imaging with nanomechanical systems. Nat. Nanotechol. 2015;10:339–344. doi: 10.1038/nnano.2015.32. PubMed DOI PMC
Tsai P.-C., Jeng Y.-R., Lee J.-T., Stachiv I., Sittner P. Effects of carbon nanotube reinforcement and grain size refinement mechanical properties and wear behaviors of carbon nanotube/copper composites. Diam. Relat. Mater. 2017;74:197–204. doi: 10.1016/j.diamond.2017.03.012. DOI
Faurie D., Renault P.O., Le Bourhis E., Goudeau P. Study of texture effect on elastic properties of Au thin films by X-ray diffraction and in situ tensile testing. Acta Mater. 2006;54:4503–4513. doi: 10.1016/j.actamat.2006.05.036. DOI
Moreland J. Micromechanical instruments for ferromagnetic measurements. J. Phys. D Appl. Phys. 2003;36:R39. doi: 10.1088/0022-3727/36/5/201. DOI
Boisen A., Dohn S., Keller S.S., Schmid S., Tenje M. Cantilever-like micromechanical sensors. Rep. Prog. Phys. 2011;74:36101. doi: 10.1088/0034-4885/74/3/036101. DOI
Miyazaki S., Fu Y.Q., Huang W.M. Thin Film Shape Memory Alloys: Fundamentals and Device Applications. Cambridge University Press; Cambridge, UK: 2009.
Koh J.-S. Design of Shape Memory Alloy Coil Spring Actuator for Improving Performance in Cyclic Actuation. Materials. 2018;11:2324. doi: 10.3390/ma11112324. PubMed DOI PMC
Knick C.R., Sharar D.J., Wilson A.A., Smith G.L., Morris C.J., A Bruck H., Wilson A. High frequency, low power, electrically actuated shape memory alloy MEMS bimorph thermal actuators. J. Micromech. Microeng. 2019;29:075005. doi: 10.1088/1361-6439/ab1633. DOI
Stachiv I., Sittner P., Olejnicek J., Landa M., Heller L. Exploiting NiTi shape memory alloy films in design of tunable high frequency microcantilever resonators. Appl. Phys. Lett. 2017;111:213105. doi: 10.1063/1.4998006. DOI
Stachiv I., Šittner P. Nanocantilevers with Adjustable Static Deflection and Significantly Tunable Spectrum Resonant Frequencies for Applications in Nanomechanical Mass Sensors. Nanomaterials. 2018;8:116. doi: 10.3390/nano8020116. PubMed DOI PMC
Fu Y., Du H., Zhang S. Sputtering deposited TiNi films: Relationship among processing, stress evolution and phase transformation behaviors. Surf. Coat. Technol. 2003;167:120–128. doi: 10.1016/S0257-8972(02)00896-4. DOI
Zapoměl J., Stachiv I., Ferfecki P. A novel method combining Monte Carlo–FEM simulations and experiments for simultaneous evaluation of the ultrathin film mass density and Young’s modulus. Mech. Syst. Signal Process. 2016;66:223–231. doi: 10.1016/j.ymssp.2015.06.022. DOI
Sader J.E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 1998;84:64–76. doi: 10.1063/1.368002. DOI
Prandtl L. Zur torsion von prismatischen stäben. Phys. Z. 1903;4:758–770.
Green C.P., Sader J.E. Torsional frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 2002;92:6262–6274. doi: 10.1063/1.1512318. DOI
Stachiv I. Impact of surface and residual stresses and electro-/magnetostatic axial loading on the suspended nanomechanical based mass sensors: A theoretical study. J. Appl. Phys. 2014;115:214310. doi: 10.1063/1.4880396. DOI
Grüter R.R., Khan Z., Paxman R., Ndieyira J.W., Dueck B., Bircher B.A., Yang J.L., Drechsler U., Despont M., McKendry R.A., et al. Disentangling mechanical and mass effects on nanomechanical resonators. Appl. Phys. Lett. 2010;96:023113. doi: 10.1063/1.3285169. DOI
Hildebrand F.B. Introduction to Numerical Analysis. 2nd ed. Dover Publications, Inc.; New York, NY, USA: 1987.
Dohn S., Svendsen W., Boisen A., Hansen O. Mass and position determination of attached particles on cantilever based mass sensors. Rev. Sci. Instrum. 2007;78:103303. doi: 10.1063/1.2804074. PubMed DOI
Tamayo J., Kosaka P.M., Ruz J.J., Paulo A.S., Calleja M. Biosensors based on nanomechanical systems. Chem. Soc. Rev. 2013;42:1287–1311. doi: 10.1039/c2cs35293a. PubMed DOI
Tamayo J., Ramos D., Mertens J., Calleja M. Effect of the adsorbate stiffness on the resonance response of microcantilever sensors. Appl. Phys. Lett. 2006;89:224104. doi: 10.1063/1.2388925. DOI
Sader J.E., Hanay M.S., Neumann A.P., Roukes M.L. Mass Spectrometry Using Nanomechanical Systems: Beyond the Point-Mass Approximation. Nano Lett. 2018;18:1608–1614. doi: 10.1021/acs.nanolett.7b04301. PubMed DOI
Sedmák P., Pilch J., Heller L., Kopeček J., Wright J., Sedlák P., Frost M., Šittner P. Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load. Science. 2016;353:559–562. doi: 10.1126/science.aad6700. PubMed DOI
Protein adsorption by nanomechanical mass spectrometry: Beyond the real-time molecular weighting