Use of Deep Eutectic Solvents in Polymer Chemistry-A Review
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
15-0052
Agentúra na Podporu Výskumu a Vývoja
1/0403/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0387/18
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
ITMS 26240120016
European Regional Development Fund
ITMS 26240120028
European Regional Development Fund
ITMS 26240220073
European Regional Development Fund
ITMS 26240220084
European Regional Development Fund
No. CZ.02.1.01/0.0/0.0/16_019/0000845
European Regional Development Fund
PubMed
31684174
PubMed Central
PMC6864848
DOI
10.3390/molecules24213978
PII: molecules24213978
Knihovny.cz E-resources
- Keywords
- cellulose, deep eutectic solvents, modification, polymer, polymerization,
- MeSH
- Cellulose chemistry MeSH
- Ionic Liquids MeSH
- Nanostructures chemistry MeSH
- Chemistry, Organic MeSH
- Polymerization MeSH
- Polymers chemistry classification MeSH
- Solvents chemistry MeSH
- Green Chemistry Technology MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Cellulose MeSH
- Ionic Liquids MeSH
- Polymers MeSH
- Solvents MeSH
This review deals with two overlapping issues, namely polymer chemistry and deep eutectic solvents (DESs). With regard to polymers, specific aspects of synthetic polymers, polymerization processes producing such polymers, and natural cellulose-based nanopolymers are evaluated. As for DESs, their compliance with green chemistry requirements, their basic properties and involvement in polymer chemistry are discussed. In addition to reviewing the state-of-the-art for selected kinds of polymers, the paper reveals further possibilities in the employment of DESs in polymer chemistry. As an example, the significance of DES polarity and polymer polarity to control polymerization processes, modify polymer properties, and synthesize polymers with a specific structure and behavior, is emphasized.
See more in PubMed
Abbott A.P., Boothby D., Capper G., Davies D.L., Rasheed R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004;126:9142–9147. doi: 10.1021/ja048266j. PubMed DOI
Abbott A.P., Capper G., McKenzie K.J., Ryder K.S. Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid. Electrochim. Acta. 2006;51:4420–4425. doi: 10.1016/j.electacta.2005.12.030. DOI
Dai Y., van Spronsen J., Witkamp G.J., Verpoorte R., Choi Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta. 2013;766:61–68. doi: 10.1016/j.aca.2012.12.019. PubMed DOI
Liu Y., Zhang H., Yu H., Guo S., Chen D. Deep eutectic solvent as a green solvent for enhanced extraction of narirutin, naringin, hesperidin and neohesperidin from Aurantii Fructus. Phytochem. Anal. 2019;30:156–163. doi: 10.1002/pca.2801. PubMed DOI
Hou Y.C., Yao C.F., Wu W.Z. Deep eutectic solvents: Green solvents for separation applications. Acta Phys. Chim. Sin. 2018;34:873–885.
Vanda H., Dai Y., Wilson E.G., Verpoorte R., Choi Y.H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. C. R. Chim. 2018;21:628–638. doi: 10.1016/j.crci.2018.04.002. DOI
Roda A., Matias A.A. Polymer science and engineering using deep eutectic solvents. Polymers. 2019;11:912. doi: 10.3390/polym11050912. PubMed DOI PMC
Wu M., Ma H., Ma Z., Jin Y., Chen C., Guo X., Qiao Y., Pedersen C.M., Hou X., Wang Y. Deep eutectic solvents: Green solvents and catalysts for the preparation of pyrazine derivatives by self-condensation of d-glucosamine. ACS Sustain. Chem. Eng. 2018;6:9434–9441. doi: 10.1021/acssuschemeng.8b01788. DOI
Huang Z.-L., Wu B.-P., Wen Q., Yang T.-X., Yang Z. Deep eutectic solvents can be viable enzyme activators and stabilizers. J. Chem. Technol. Biot. 2014;89:1975–1981. doi: 10.1002/jctb.4285. DOI
Durand E., Lecomte J., Villeneuve P. Deep eutectic solvents: Synthesis, application, and focus on lipase-catalyzed reactions. Eur. J. Lipid Sci. Tech. 2013;115:379–385. doi: 10.1002/ejlt.201200416. DOI
Jablonský M., Šima J. Deep Eutectic Solvents in Biomass Valorization. Spektrum STU; Bratislava, Slovakia: 2019. p. 176.
Mbous Y.P., Hayyan M., Hayyan A., Wong W.F., Hashim M.A., Looi C.Y. Applications of deep eutectic solvents in biotechnology and bioengineering-Promises and challenges. Biotechnol. Adv. 2017;35:105–134. doi: 10.1016/j.biotechadv.2016.11.006. PubMed DOI
Procentese A., Johnson E., Orr V., Garruto Campanile A., Wood J.A., Marzocchella A., Rehmann L. Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour. Technol. 2015;192:31–36. doi: 10.1016/j.biortech.2015.05.053. PubMed DOI
Xu G.C., Ding J.C., Han R.Z., Dong J.J., Ni Y. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour. Technol. 2016;203:364–369. doi: 10.1016/j.biortech.2015.11.002. PubMed DOI
Doble M., Kruthiventi A.K. Green Chemistry and Engineering. Academic Press Elsevier; Cambridge, MA, USA: 2007. 344p
Häckl K., Kunz W. Some aspects of green solvents. C. R. Chim. 2018;21:572–580. doi: 10.1016/j.crci.2018.03.010. DOI
Tarczykowska A. Green solvents. J. Educ. Health Sport. 2017;7:224–232.
Capello C., Fischer U., Hungerbuhler K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green. Chem. 2007;9:927–934. doi: 10.1039/b617536h. DOI
Byrne F.P., Jin S., Paggiola G., Petchey T.H.M., Clark J.H., Farmer T.J., Hunt A.J., Robert McElroy C., Sherwood J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016;4:7. doi: 10.1186/s40508-016-0051-z. DOI
Oliveira Vigier K., Garcia-Alvarez J. Deep eutectic and low-melting mixtures. In: Jerome F., Luque R., editors. Bio-Based Solvents. John Wiley & Sons; Hoboken, NJ, USA: 2017. pp. 83–114.
Ruß C., König B. Low melting mixtures in organic synthesis—An alternative to ionic liquids? Green Chem. 2012;14:2969–2982. doi: 10.1039/c2gc36005e. DOI
Liu Y.-T., Chen Y.-A., Xing Y.-J. Synthesis and characterization of novel ternary deep eutectic solvents. Chinese Chem. Lett. 2014;25:104–106. doi: 10.1016/j.cclet.2013.09.004. DOI
Mota-Morales J.D., Sánchez-Leija R.J., Carranza A., Pojman J.A., del Monte F., Luna-Bárcenas G. Free-Radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Prog. Polym. Sci. 2018;78:139–153. doi: 10.1016/j.progpolymsci.2017.09.005. DOI
Liu Y., Friesen J.B., McAlpine J.B., Lankin D.C., Chen S.N., Pauli G.F. Natural deep eutectic solvents: Properties, applications, and perspectives. J. Nat. Prod. 2018;81:679–690. doi: 10.1021/acs.jnatprod.7b00945. PubMed DOI PMC
Banerjee A., Ibsen K., Brown T., Chen R., Agatemor C., Mitragotri S. Reply to rogers and gurau: Definitions of ionic liquids and deep eutectic solvents. Proc. Natl. Acad. Sci. USA. 2018;115:E11000–E11001. doi: 10.1073/pnas.1815526115. PubMed DOI PMC
Pui Yee Shak K., Ling Pang Y., Keat Mah S. Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein J. Nanotech. 2018;9:2479–2498. doi: 10.3762/bjnano.9.232. PubMed DOI PMC
Du H., Liu W., Zhang M., Si C., Zhang X., Li B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd. Polym. 2019;209:130–144. doi: 10.1016/j.carbpol.2019.01.020. PubMed DOI
Habibi Y., Lucia L.A., Rojas O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 2010;110:3479–3500. doi: 10.1021/cr900339w. PubMed DOI
Rol F., Belgacem M.N., Gandini A., Bras J. Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 2019;88:241–264. doi: 10.1016/j.progpolymsci.2018.09.002. DOI
Kumar A.K., Parikh B.S., Pravakar M. Natural deep eutectic solvent mediated pretreatment of rice straw: Bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. Int. 2016;23:9265–9275. doi: 10.1007/s11356-015-4780-4. PubMed DOI
El Achkar T., Fourmentin S., Greige-Gerges H. Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. J. Mol. Liq. 2019;288:111028. doi: 10.1016/j.molliq.2019.111028. DOI
Yiin C.L., Quitain A.T., Yusup S., Sasaki M., Uemura Y., Kida T. Characterization of natural low transition temperature mixtures (LTTMs): Green solvents for biomass delignification. Bioresour. Technol. 2016;199:258–264. doi: 10.1016/j.biortech.2015.07.103. PubMed DOI
Alvarez-Vasco C., Ma R., Quintero M., Guo M., Geleynse S., Ramasamy K.K., Wolcott M., Zhang X. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization. Green Chem. 2016;18:5133–5141. doi: 10.1039/C6GC01007E. DOI
Smith E.L., Abbott A.P., Ryder K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014;114:11060–11082. doi: 10.1021/cr300162p. PubMed DOI
Buchman A.L. The addition of choline to parenteral nutrition. Gastroenterology. 2009;137:119–128. doi: 10.1053/j.gastro.2009.08.010. PubMed DOI
Choline. [(accessed on 27 October 2019)]; Available online: https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=19&contentid=Choline.
Kadhom M.A., Abdullah G.H., Al-Bayati N. Studying two series of ternary deep eutectic solvents (choline chloride-urea-glycerol) and (choline chloride-malic acid-glycerol), synthesis and characterizations. Arab. J. Sci. Eng. 2017;42:1579–1589. doi: 10.1007/s13369-017-2431-4. DOI
Wang J., Baker Sheila N. Pyrrolidinium salt based binary and ternary deep eutectic solvents: Green preparations and physiochemical property characterizations. Green Proc. Synth. 2018;7:353. doi: 10.1515/gps-2017-0060. DOI
Jablonský M., Škulcová A., Malvis A., Šima J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 2018;282:46–66. doi: 10.1016/j.jbiotec.2018.06.349. PubMed DOI
Troter D., Todorovic Z., Đokić-Stojanović D., Đordević S.B., Todorovic V., Konstantinović S., Veljković V. The physicochemical and thermodynamic properties of the choline chloride-based deep eutectic solvents. J. Serb. Chem. Soc. 2017;82:1039–1052. doi: 10.2298/JSC170225065T. DOI
Zhang Q., De Oliveira Vigier K., Royer S., Jérôme F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012;41:7108–7146. doi: 10.1039/c2cs35178a. PubMed DOI
Isaifan R., Amhamed A. Review on carbon dioxide absorption by choline chloride/urea deep eutectic solvents. Adv. Chem. 2018;2018:1–6. doi: 10.1155/2018/2675659. DOI
Rumble J.R., Lide D.R., Bruno T.J. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data. CRC Press; Boca Raton, FL, USA: 2018.
Reichardt C.W.T. Solvents and Solvent Effects in Organic Chemistry. John Wiley and Sons; Hoboken, NJ, USA: 2011.
Florindo C., McIntosh A.J.S., Welton T., Branco L.C., Marrucho I.M. A closer look into deep eutectic solvents: Exploring intermolecular interactions using solvatochromic probes. Phys. Chem. Chem. Phys. 2017;20:206–213. doi: 10.1039/C7CP06471C. PubMed DOI
Teles A.R.R., Capela E.V., Carmo R.S., Coutinho J.A.P., Silvestre A.J.D., Freire M.G. Solvatochromic parameters of deep eutectic solvents formed by ammonium-based salts and carboxylic acids. Fluid Phase Equilib. 2017;448:15–21. doi: 10.1016/j.fluid.2017.04.020. PubMed DOI PMC
Buhvestov U., Rived F., Ràfols C., Bosch E., Rosés M. Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 7. Comparison of the enhancement of the water structure in alcohol-water mixtures measured by solvatochromic indicators. J. Phys. Org. Chem. 1998;11:185–192. doi: 10.1002/(SICI)1099-1395(199803)11:3<185::AID-POC993>3.0.CO;2-5. DOI
Kim S.H., Park S., Yu H., Kim J.H., Kim H.J., Yang Y.-H., Kim Y.H., Kim K.J., Kan E., Lee S.H. Effect of deep eutectic solvent mixtures on lipase activity and stability. J. Mol. Catal. B: Enzym. 2016;128:65–72. doi: 10.1016/j.molcatb.2016.03.012. DOI
Yinghuai Z., Yuanting K.T., Hosmane N. Ionic Liquids—New Aspects for the Future. IntechOpen; London, UK: 2013. Applications of ionic liquids in lignin chemistry; pp. 315–346.
Kerton F. Alternative Solvents for Green Chemistry. RSC Publishing; Cambridge, UK: 2009. Renewable solvents; pp. 97–117.
Phan L., Andreatta J.R., Horvey L.K., Edie C.F., Luco A.-L., Mirchandani A., Darensbourg D.J., Jessop P.G. Switchable-Polarity solvents prepared with a single liquid component. J. Org. Chem. 2008;73:127–132. doi: 10.1021/jo7017697. PubMed DOI
Spange S., Vilsmeier E., Fischer K., Reuter A., Prause S., Zimmermann Y., Schmidt C. Empirical polarity parameters for various macromolecular and related materials. Macromol. Rapid Commun. 2000;21:643–659. doi: 10.1002/1521-3927(20000601)21:10<643::AID-MARC643>3.0.CO;2-1. DOI
Czerwinski W.K. Solvent effects on free-radical polymerization. 6. Solvatochromic (LSER) analysis of the solvent effect on the homopolymerization rate on the basis of the reaction-solvent complex model. Macromolecules. 1995;28:5405–5410. doi: 10.1021/ma00120a002. DOI
Chadha R.N., Shukla J.S., Misra G.S. Studies in chain-transfer. Part 2—Catalyzed polymerization of methyl methacrylate. Trans. Faraday Soc. 1957;53:240–246. doi: 10.1039/TF9575300240. DOI
Mitra B.C., Chadha S.C., Ghosh P., Palit S.R. Studies on some radical transfer reactions. Part I. Hydrogen atom abstraction from some organic substrates by OH radicals. J. Polym. Sci. Part. A Polym. Chem. 1966;4:901–906. doi: 10.1002/pol.1966.150040415. DOI
Chen Y.-L., Zhang X., You T.-T., Xu F. Deep eutectic solvents (DESs) for cellulose dissolution: A mini-review. Cellulose. 2018;26:1–9. doi: 10.1007/s10570-018-2130-7. DOI
Loow Y.-L., New E.K., Yang G.H., Ang L.Y., Foo L.Y.W., Wu T.Y. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose. 2017;24:3591–3618. doi: 10.1007/s10570-017-1358-y. DOI
Zdanowicz M., Wilpiszewska K., Spychaj T. Deep eutectic solvents for polysaccharides processing. A review. Carbohydr. Polym. 2018;200:361–380. doi: 10.1016/j.carbpol.2018.07.078. PubMed DOI
Carriazo D., Serrano M.C., Gutiérrez M.C., Ferrer M.L., del Monte F. Deep-Eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem. Soc. Rev. 2012;41:4996–5014. doi: 10.1039/c2cs15353j. PubMed DOI
Del Monte F., Carriazo D., Serrano M.C., Gutiérrez M.C., Ferrer M.L. Deep eutectic solvents in polymerizations: A greener alternative to conventional syntheses. ChemSusChem. 2014;7:999–1009. doi: 10.1002/cssc.201300864. PubMed DOI
Pojman J.A. Traveling fronts of methacrylic acid polymerization. J. Amer. Chem. Soc. 1991;113:6284–6286. doi: 10.1021/ja00016a063. DOI
Pojman J.A., Ilyashenko V.M., Khan A.M. Free-Radical frontal polymerization: Self-Propagating thermal reaction waves. J. Chem. Soc. Faraday Trans. 1996;92:2825–2837. doi: 10.1039/ft9969202825. DOI
Mota-Morales J.D., Gutiérrez M.C., Ferrer M.L., Jiménez R., Santiago P., Sanchez I.C., Terrones M., Del Monte F., Luna-Bárcenas G. Synthesis of macroporous poly(acrylic acid)–carbon nanotube composites by frontal polymerization in deep-eutectic solvents. J. Mater. Chem. A. 2013;1:3970–3976. doi: 10.1039/c3ta01020a. DOI
Bednarz S., Wesołowska A., Trątnowiecka M., Bogdal D. Polymers from Biobased-Monomers: Macroporous Itaconic Xerogels Prepared in Deep Eutectic Solvents. J. Renew. Mater. 2016;4:18–23. doi: 10.7569/JRM.2015.634131. DOI
Bednarz S., Fluder M., Galica M., Bogdal D., Maciejaszek I. Synthesis of hydrogels by polymerization of itaconic acid-choline chloride deep eutectic solvent. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.40608. DOI
Sánchez-Leija R.J., Pojman J.A., Luna-Bárcenas G., Mota-Morales J.D. Controlled release of lidocaine hydrochloride from polymerized drug-based deep-eutectic solvents. J. Mater. Chem. B. 2014;2:7495–7501. doi: 10.1039/C4TB01407C. PubMed DOI
Wesołowska A., Bednarz S., Milanowski Ł. Study of Copper Ion. Adsorption by Itaconic-Based Hydrogels; Proceedings of the 18th International Electronic Conference on Synthetic Organic Chemistry session Polymer and Supramolecular Chemistry; Lugo, Spain. 3 November 2014; p. d013.
Marcus Y. Estimation of the critical temperatures of some more deep eutectic solvents from their surface tensions. Adv. Mater. Sci. Eng. 2018;2018:1–3. doi: 10.1155/2018/5749479. DOI
Mirza N.R., Nicholas N.J., Wu Y., Kentish S., Stevens G.W. Estimation of normal boiling temperatures, critical properties, and acentric factors of deep eutectic solvents. J. Chem. Eng. Data. 2015;60:1844–1854. doi: 10.1021/acs.jced.5b00046. DOI
Bednarz S., Błaszczyk A., Błażejewska D., Bogdał D. Free-Radical polymerization of itaconic acid in the presence of choline salts: Mechanism of persulfate decomposition. Catal. Today. 2015;257:297–304. doi: 10.1016/j.cattod.2014.07.021. DOI
Bednarz S., Kowalski G., Konefał R. Unexpected irregular structures of poly(itaconic acid) prepared in deep eutectic solvents. Eur. Polym. J. 2019;115:30–36. doi: 10.1016/j.eurpolymj.2019.03.021. DOI
Bednarz S., Półćwiartek K., Wityk J., Strachota B., Kredatusová J., Beneš H., Wesołowska-Piętak A., Kowalski G. Polymerization-Crosslinking of renewable itaconic acid in water and in deep eutectic solvents. Eur. Polym. J. 2017;95:241–254. doi: 10.1016/j.eurpolymj.2017.08.020. DOI
Isik M., Ruiperez F., Sardon H., Gonzalez A., Zulfiqar S., Mecerreyes D. Innovative Poly(Ionic Liquid)s by the polymerization of deep eutectic monomers. Macromol. Rapid Commun. 2016;37:1135–1142. doi: 10.1002/marc.201600026. PubMed DOI
Isik M., Zulfiqar S., Edhaim F., Ruiperez F., Rothenberger A., Mecerreyes D. Sustainable Poly(Ionic Liquids) for CO2 capture based on deep eutectic monomers. ACS Sustain. Chem. Eng. 2016;4:7200–7208. doi: 10.1021/acssuschemeng.6b02137. DOI
Mota-Morales J.D., Gutiérrez M.C., Ferrer M.L., Sanchez I.C., Elizalde-Peña E.A., Pojman J.A., Monte F.D., Luna-Bárcenas G. Deep eutectic solvents as both active fillers and monomers for frontal polymerization. J. Polym. Sci. Pol. Chem. 2013;51:1767–1773. doi: 10.1002/pola.26555. DOI
Li R.A., Chen G., He M., Tian J., Su B. Patternable transparent and conductive elastomers towards flexible tactile/strain sensors. J. Mater. Chem. C. 2017;5:8475–8481. doi: 10.1039/C7TC02703F. DOI
Qin H., Panzer M.J. Chemically cross-linked Poly(2-hydroxyethyl methacrylate)-supported deep eutectic solvent gel electrolytes for eco-friendly supercapacitors. ChemElectroChem. 2017;4:2556–2562. doi: 10.1002/celc.201700586. DOI
Mukesh C., Upadhyay K.K., Devkar R.V., Chudasama N.A., Raol G.G., Prasad K. Preparation of a noncytotoxic hemocompatible ion gel by self-polymerization of HEMA in a green deep eutectic solvent. Macromol. Chem. Phys. 2016;217:1899–1906. doi: 10.1002/macp.201600122. DOI
Mukesh C., Gupta R., Srivastava D., Sanna Kotrappanavar N., Prasad K. Preparation of natural deep eutectic solvent mediated self polymerized highly flexible transparent gel having super capacitive behaviour. RSC Adv. 2016;6 doi: 10.1039/C6RA03309A. DOI
Wang J., Han J., Khan M.Y., He D., Peng H., Chen D., Xie X., Xue Z. Deep eutectic solvents for green and efficient iron-mediated ligand-free atom transfer radical polymerization. Polym. Chem. 2017;8:1616–1627. doi: 10.1039/C6PY02066F. DOI
García-Argüelles S., García C., Serrano M.C., Gutiérrez M.C., Ferrer M.L., del Monte F. Near-To-Eutectic mixtures as bifunctional catalysts in the low-temperature-ring-opening-polymerization of ε-caprolactone. Green Chem. 2015;17:3632–3643. doi: 10.1039/C5GC00348B. DOI
Garcia-Arguelles S., Serrano M.C., Gutierrez M.C., Ferrer M.L., Yuste L., Rojo F., del Monte F. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties. Langmuir. 2013;29:9525–9534. doi: 10.1021/la401353r. PubMed DOI
Serrano M.C., Gutiérrez M.C., Jiménez R., Ferrer M.L., Monte F.D. Synthesis of novel lidocaine-releasing poly(diol-co-citrate) elastomers by using deep eutectic solvents. Chem. Commun. 2012;48:579–581. doi: 10.1039/C1CC15284J. PubMed DOI
Mendonça P.V., Lima M.S., Guliashvili T., Serra A.C., Coelho J.F.J. Deep eutectic solvents (DES): Excellent green solvents for rapid SARA ATRP of biorelevant hydrophilic monomers at ambient temperature. Polymer. 2017;132:114–121. doi: 10.1016/j.polymer.2017.10.060. DOI
Hosu O., Barsan M.M., Cristea C., Săndulescu R., Brett C.M.A. Nanocomposites based on carbon nanotubes and redox-active polymers synthesized in a deep eutectic solvent as a new electrochemical sensing platform. Microchim. Acta. 2017;184:3919–3927. doi: 10.1007/s00604-017-2420-z. DOI
Hosu O., Bârsan M.M., Cristea C., Săndulescu R., Brett C.M.A. Nanostructured electropolymerized poly(methylene blue) films from deep eutectic solvents. Optimization and characterization. Electrochim. Acta. 2017;232:285–295. doi: 10.1016/j.electacta.2017.02.142. DOI
Ezgi Unlu A., Prasad B., Anavekar K., Bubenheim P., Liese A. Investigation of a green process for the polymerization of catechin. Prep. Biochem. Biotechnol. 2017;47:918–924. doi: 10.1080/10826068.2017.1365241. PubMed DOI
Sánchez-Leija R.J., Torres-Lubián J.R., Reséndiz-Rubio A., Luna-Bárcenas G., Mota-Morales J.D. Enzyme-Mediated free radical polymerization of acrylamide in deep eutectic solvents. RSC Adv. 2016;6:13072–13079. doi: 10.1039/C5RA27468K. DOI
Yang B., Cai T., Li Z., Guan M., Qiu H. Surface radical chain-transfer reaction in deep eutectic solvents for preparation of silica-grafted stationary phases in hydrophilic interaction chromatography. Talanta. 2017;175:256–263. doi: 10.1016/j.talanta.2017.07.038. PubMed DOI
Zhang L.S., Gao S.P., Huang Y.P., Liu Z.S. Green synthesis of polymer monoliths incorporated with carbon nanotubes in room temperature ionic liquid and deep eutectic solvents. Talanta. 2016;154:335–340. doi: 10.1016/j.talanta.2016.03.088. PubMed DOI
Carranza A., Pojman J.A., Mota-Morales J.D. Deep-Eutectic solvents as a support in the nonaqueous synthesis of macroporous poly(HIPEs) RSC Adv. 2014;4:41584–41587. doi: 10.1039/C4RA06778A. DOI
Pérez-García M.G., Carranza A., Puig J.E., Pojman J.A., del Monte F., Luna-Bárcenas G., Mota-Morales J.D. Porous monoliths synthesized via polymerization of styrene and divinyl benzene in nonaqueous deep-eutectic solvent-based HIPEs. RSC Adv. 2015;5:23255–23260. doi: 10.1039/C5RA02374B. PubMed DOI PMC
Sapir L., Stanley C.B., Harries D. Properties of polyvinylpyrrolidone in a deep eutectic solvent. J. Phys. Chem. A. 2016;120:3253–3259. doi: 10.1021/acs.jpca.5b11927. PubMed DOI
Mano F., Aroso I.M., Barreiros S., Borges J.P., Reis R.L., Duarte A.R.C., Paiva A. Production of Poly(vinyl alcohol) (PVA) fibers with encapsulated natural deep eutectic solvent (NADES) using electrospinning. ACS Sustain. Chem. Eng. 2015;3:2504–2509. doi: 10.1021/acssuschemeng.5b00613. DOI
Nardecchia S., Gutierrez M.C., Ferrer M.L., Alonso M., Lopez I.M., Rodriguez-Cabello J.C., del Monte F. Phase behavior of elastin-like synthetic recombinamers in deep eutectic solvents. Biomacromolecules. 2012;13:2029–2036. doi: 10.1021/bm300200e. PubMed DOI
Gutiérrez M.C., Rubio F., del Monte F. Resorcinol-Formaldehyde polycondensation in deep eutectic solvents for the preparation of carbons and carbon-carbon nanotube composites. Chem. Mater. 2010;22:2711–2719. doi: 10.1021/cm9023502. DOI
Patiño J., Gutiérrez M.C., Carriazo D., Ania C.O., Parra J.B., Ferrer M.L., Monte F.D. Deep eutectic assisted synthesis of carbon adsorbents highly suitable for low-pressure separation of CO2-CH4 gas mixtures. Energ. Environ. Sci. 2012;5:8699–8707. doi: 10.1039/c2ee22029f. DOI
Ren H., Chen C., Guo S., Zhao D., Wang Q. Synthesis of a novel allyl-functionalized deep eutectic solvent to promote dissolution of cellulose. BioResources. 2016;11:4. doi: 10.15376/biores.11.4.8457-8469. DOI
Ren H., Chen C., Wang Q., Zhao D., Guo S. The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose. BioResources. 2016;11:2. doi: 10.15376/biores.11.2.5435-5451. DOI
Supeno S., Daik R., El-Sheikh S.M. The synthesis of a macro-initiator from cellulose in a zinc-based ionic liquid. BioResources. 2014;9:1. doi: 10.15376/biores.9.1.1267-1275. DOI
Zhang Q., Benoit M., De Oliveira Vigier K., Barrault J., Jérôme F. Green and inexpensive choline-derived solvents for cellulose decrystallization. Chem. Eur. J. 2012;18:1043–1046. doi: 10.1002/chem.201103271. PubMed DOI
Laitinen O., Ojala J., Sirviö J.A., Liimatainen H. Sustainable stabilization of oil in water emulsions by cellulose nanocrystals synthesized from deep eutectic solvents. Cellulose. 2017;24:1679–1689. doi: 10.1007/s10570-017-1226-9. DOI
Laitinen O., Suopajärvi T., Sirviö J., Liimatainen H. Superabsorbent aerogels from cellulose nanofibril hydrogels. In: Mondal M., editor. Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer; Cham, Switzerland: 2018.
Li P., Sirviö J.A., Haapala A., Liimatainen H. Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS Appl. Mater. Interfaces. 2017;9:2846–2855. doi: 10.1021/acsami.6b13625. PubMed DOI
Ojala J., Visanko M., Laitinen O. Emulsion stabilization with functionalized cellulose nanoparticles fabricated using deep eutectic solvents. Molecules. 2018;23:2765. doi: 10.3390/molecules23112765. PubMed DOI PMC
Selkala T., Sirvio J.A., Lorite G.S., Limatainen H. Anionically stabilized cellulose nanofibrils through succinylation pretreatment in urea-lithium chloride deep eutectic solvent. ChemSusChem. 2016;9:3074–3083. doi: 10.1002/cssc.201600903. PubMed DOI
Sirviö J., Visanko M., Liimatainen H. Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules. 2016;17:3025–3032. doi: 10.1021/acs.biomac.6b00910. PubMed DOI
Sirviö J.A., Visanko M., Liimatainen H. Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem. 2015;17:3401–3406. doi: 10.1039/C5GC00398A. DOI
Suopajärvi T., Sirviö J.A., Liimatainen H. Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps. Carbohydr. Polym. 2017;169:167–175. doi: 10.1016/j.carbpol.2017.04.009. PubMed DOI
Tenhunen T.-M., Pöhler T., Kokko A., Orelma H., Gane P., Schenker M., Tammelin T. Enhancing the stability of aqueous dispersions and foams comprising cellulose nanofibrils (CNF) with CaCO3 particles. Nanomaterials. 2018;8:651. doi: 10.3390/nano8090651. PubMed DOI PMC
Tenhunen T.-M., Lewandowska A.E., Orelma H., Johansson L.-S., Virtanen T., Harlin A., Österberg M., Eichhorn S.J., Tammelin T. Understanding the interactions of cellulose fibres and deep eutectic solvent of choline chloride and urea. Cellulose. 2018;25:137–150. doi: 10.1007/s10570-017-1587-0. DOI
Willberg-Keyriläinen P., Hiltunen J., Ropponen J. Production of cellulose carbamate using urea-based deep eutectic solvents. Cellulose. 2018;25:195–204. doi: 10.1007/s10570-017-1465-9. DOI
Lynam J.G., Kumar N., Wong M.J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour. Technol. 2017;238:684–689. doi: 10.1016/j.biortech.2017.04.079. PubMed DOI
Sirviö J.A., Heiskanen J.P. Synthesis of alkaline-soluble cellulose methyl carbamate using a reactive deep eutectic solvent. ChemSusChem. 2017;10:455–460. doi: 10.1002/cssc.201601270. PubMed DOI
Laitinen O., Suopajärvi T., Österberg M., Liimatainen H. Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl. Mater. Interfaces. 2017;9:25029–25037. doi: 10.1021/acsami.7b06304. PubMed DOI
Slavik I. Celulóza a Jej Chemické Spracovanie. Slovenská Akadémia Vied; Bratislava, Slovakia: 1953.
Liu Y., Guo B., Xia Q., Meng J., Chen W., Liu S., Wang Q., Liu Y., Li J., Yu H. Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain. Chem. Eng. 2017;5:7623–7631. doi: 10.1021/acssuschemeng.7b00954. DOI
Ling Z., Edwards J.V., Guo Z., Prevost N.T., Nam S., Wu Q., French A.D., Xu F. Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: Micro and nano scale. Cellulose. 2019;26:861–876. doi: 10.1007/s10570-018-2092-9. DOI
Sirviö J.A. Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent. J. Mater. Chem. A. 2019;7:755–763. doi: 10.1039/C8TA09959F. DOI
Yang X., Xie H., Du H., Zhang X., Zou Z., Zou Y., Liu W., Lan H., Zhang X., Si C. Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain. Chem. Eng. 2019;7:7200–7208. doi: 10.1021/acssuschemeng.9b00209. DOI
Oksman K., Aitomäki Y., Mathew A.P., Siqueira G., Zhou Q., Butylina S., Tanpichai S., Zhou X., Hooshmand S. Review of the recent developments in cellulose nanocomposite processing. Compos. Part. A Appl. S. 2016;83:2–18. doi: 10.1016/j.compositesa.2015.10.041. DOI
Li P., Sirviö J.A., Asante B., Liimatainen H. Recyclable deep eutectic solvent for the production of cationic nanocelluloses. Carbohydr. Polym. 2018;199:219–227. doi: 10.1016/j.carbpol.2018.07.024. PubMed DOI
Yu W., Wang C., Yi Y., Zhou W., Wang H., Yang Y., Tan Z. Choline chloride-based deep eutectic solvent systems as a pretreatment for nanofibrillation of ramie fibers. Cellulose. 2019 doi: 10.1007/s10570-019-02290-7. DOI
Ma Y., Xia Q., Liu Y., Chen W., Liu S., Wang Q., Liu Y., Li J., Yu H. Production of nanocellulose using hydrated deep eutectic solvent combined with ultrasonic treatment. ACS Omega. 2019;4:8539–8547. doi: 10.1021/acsomega.9b00519. PubMed DOI PMC
Li P., Sirviö J.A., Haapala A., Khakalo A., Liimatainen H. Anti-Oxidative and UV-absorbing biohybrid film of cellulose nanofibrils and tannin extract. Food Hydrocolloid. 2019;92:208–217. doi: 10.1016/j.foodhyd.2019.02.002. DOI
Jablonsky M., Majova V., Ondrigova K., Sima J. Preparation and characterization of physicochemical properties and application of novel ternary deep eutectic solvents. Cellulose. 2019;26:3031–3045. doi: 10.1007/s10570-019-02322-2. DOI
Tenhunen T.-M., Hakalahti M., Kouko J., Salminen A., Härkäsalmi T., Pere J., Harlin A., Hänninen T. Method for forming pulp fibre yarns developed by a design-driven process. BioResources. 2016;11:2492–2503. doi: 10.15376/biores.11.1.2492-2503. DOI
Peng L., Hao J.W., Mo L.P., Zhang Z.H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv. 2015;60:48675–48704.
Alonso A.D., Baeza A., Chinchilla R., Guillena G., Pastor I.M., Ramón D.J. Deep eutectic solvents: The organic reaction medium of the century. Eur. J. Org. Chem. 2016;4:612–632. doi: 10.1002/ejoc.201501197. DOI