The Role of TLRs in Anti-cancer Immunity and Tumor Rejection
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
R01 AI123820
NIAID NIH HHS - United States
1R01AI123820-01
NIAID NIH HHS - United States
PubMed
31695691
PubMed Central
PMC6817561
DOI
10.3389/fimmu.2019.02388
Knihovny.cz E-zdroje
- Klíčová slova
- anti-cancer immunity, immuno-oncology, immunotherapy, toll-like receptors, tumor rejection,
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- imunita * MeSH
- lidé MeSH
- ligandy MeSH
- nádory etiologie metabolismus patologie terapie MeSH
- orgánová specificita genetika imunologie MeSH
- regulace genové exprese u nádorů MeSH
- toll-like receptory agonisté genetika metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- ligandy MeSH
- toll-like receptory MeSH
In recent years, a lot of scientific interest has focused on cancer immunotherapy. Although chronic inflammation has been described as one of the hallmarks of cancer, acute inflammation can actually trigger the immune system to fight diseases, including cancer. Toll-like receptor (TLR) ligands have long been used as adjuvants for traditional vaccines and it seems they may also play a role enhancing efficiency of tumor immunotherapy. The aim of this perspective is to discuss the effects of TLR stimulation in cancer, expression of various TLRs in different types of tumors, and finally the role of TLRs in anti-cancer immunity and tumor rejection.
Department of Medical Biosciences Umeå University Umeå Sweden
International Centre for Cancer Vaccine Science University of Gdaǹsk Gdaǹsk Poland
Laboratory of Immune System Biology Bethesda MD United States
Regional Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czechia
Université Paris 7 INSERM UMR 1162 Paris France
University of Maryland School of Medicine Baltimore MD United States
Zobrazit více v PubMed
Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, et al. . Alarmins: awaiting a clinical response. J Clin Invest. (2012) 122:2711–9. 10.1172/JCI62423 PubMed DOI PMC
Zhao S, Zhang Y, Zhang Q, Wang F, Zhang D. Toll-like receptors and prostate cancer. Front Immunol. (2014) 5:352. 10.3389/fimmu.2014.00352 PubMed DOI PMC
Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A, et al. . Masquerader: high mobility group box-1 and cancer. Clin Cancer Res. (2007) 13:2836–48. 10.1158/1078-0432.CCR-06-1953 PubMed DOI
Hernandez C, Huebener P, Schwabe RF. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene. (2016) 35:5931–41. 10.1038/onc.2016.104 PubMed DOI PMC
Yang, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev. (2017) 280:41–56. 10.1111/imr.12577 PubMed DOI PMC
Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer. (2009) 9:57–63. 10.1038/nrc2541 PubMed DOI
Garay RP, Viens P, Bauer J, Normier G, Bardou M, Jeannin JF, et al. . Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help. Eur J Pharmacol. (2007) 563:1–17. 10.1016/j.ejphar.2007.02.018 PubMed DOI
McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. (2006) 26:154–8. PubMed PMC
Deidier A. Dissertation medicinal et Chirurgical sur les Tumeurs. Paris, France.
Kramer MG, Masner M, Ferreira FA, Hoffman RM. Bacterial therapy of cancer: promises, limitations, and insights for future directions. Front Microbiol. (2018) 9:16. 10.3389/fmicb.2018.00016 PubMed DOI PMC
Adams S. Toll-like receptor agonists in cancer therapy. Immunotherapy. (2009) 1:949–64. 10.2217/imt.09.70 PubMed DOI PMC
Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. (2014) 5:461. 10.3389/fimmu.2014.00461 PubMed DOI PMC
Sheyhidin I, Nabi G, Hasim A, Zhang RP, Ainiwaer J, Ma H, et al. . Overexpression of TLR3, TLR4, TLR7 and TLR9 in esophageal squamous cell carcinoma. World J Gastroenterol. (2011) 17:3745–51. 10.3748/wjg.v17.i32.3745 PubMed DOI PMC
Kauppila JH, Takala H, Selander KS, Lehenkari PP, Saarnio J, Karttunen TJ. Increased Toll-like receptor 9 expression indicates adverse prognosis in oesophageal adenocarcinoma. Histopathology. (2011) 59:643–9. 10.1111/j.1365-2559.2011.03991.x PubMed DOI
Gu J, Liu Y, Xie B, Ye P, Huang J, Lu Z. Roles of toll-like receptors: from inflammation to lung cancer progression. Biomed Rep. (2018) 8:126–32. 10.3892/br.2017.1034 PubMed DOI PMC
Zhang M, Yan Z, Wang J, Yao X. Toll-like receptors 7 and 8 expression correlates with the expression of immune biomarkers and positively predicts the clinical outcome of patients with melanoma. Onco Targets Ther. (2017) 10:4339–46. 10.2147/OTT.S136194 PubMed DOI PMC
Grimmig T, Matthes N, Hoeland K, Tripathi S, Chandraker A, Grimm M, et al. . TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer. Int J Oncol. (2015) 47:857–66. 10.3892/ijo.2015.3069 PubMed DOI PMC
Tuomela J, Sandholm J, Karihtala P, Ilvesaro J, Vuopala KS, Kauppila JH, et al. . Low TLR9 expression defines an aggressive subtype of triple-negative breast cancer. Breast Cancer Res Treat. (2012) 135:481–93. 10.1007/s10549-012-2181-7 PubMed DOI
Sandholm J, Selander KS. Toll-like receptor 9 in breast cancer. Front Immunol. (2014) 5:330. 10.3389/fimmu.2014.00330 PubMed DOI PMC
Ronkainen H, Hirvikoski P, Kauppila S, Vuopala KS, Paavonen TK, Selander KS, et al. . Absent Toll-like receptor-9 expression predicts poor prognosis in renal cell carcinoma. J Exp Clin Cancer Res. (2011) 30:84. 10.1186/1756-9966-30-84 PubMed DOI PMC
Wang C, Cao S, Yan Y, Ying Q, Jiang T, Xu K, et al. . TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients. BMC Cancer. (2010) 10:415. 10.1186/1471-2407-10-415 PubMed DOI PMC
Herrmann A, Cherryholmes G, Schroeder A, Phallen J, Alizadeh D, Xin H, et al. . TLR9 is critical for glioma stem cell maintenance and targeting. Cancer Res. (2014) 74:5218–28. 10.1158/0008-5472.CAN-14-1151 PubMed DOI PMC
Väisänen MR, Jukkola-Vuorinen A, Vuopala KS, Selander KS, Vaarala MH. Expression of Toll-like receptor-9 is associated with poor progression-free survival in prostate cancer. Oncol Lett. (2013) 5:1659–63. 10.3892/ol.2013.1204 PubMed DOI PMC
Hao B, Chen Z, Bi B, Yu M, Yao S, Feng Y, et al. . Role of TLR4 as a prognostic factor for survival in various cancers: a meta-analysis. Oncotarget. (2018) 9:13088–99. 10.18632/oncotarget.24178 PubMed DOI PMC
Alvarado AG, Thiagarajan PS, Mulkearns-Hubert EE, Silver DJ, Hale JS, Alban TJ, et al. . Glioblastoma cancer stem cells evade innate immune suppression of self-renewal through reduced TLR4 expression. Cell Stem Cell. (2017) 20:450–61.e4. 10.1016/j.stem.2016.12.001 PubMed DOI PMC
Takizawa H, Fritsch K, Kovtonyuk LV, Saito Y, Yakkala C, Jacobs K, et al. . Pathogen-induced TLR4-TRIF innate immune signaling in hematopoietic stem cells promotes proliferation but reduces competitive fitness. Cell Stem Cell. (2017) 21:225–40.e5. 10.1016/j.stem.2017.06.013 PubMed DOI
Jouhi L, Renkonen S, Atula T, Mäkitie A, Haglund C, Hagström J. Different toll-like receptor expression patterns in progression toward cancer. Front Immunol. (2014) 5:638. 10.3389/fimmu.2014.00638 PubMed DOI PMC
Chen X, Cheng F, Liu Y, Zhang L, Song L, Cai X, et al. . Toll-like receptor 2 and Toll-like receptor 4 exhibit distinct regulation of cancer cell stemness mediated by cell death-induced high-mobility group box 1. EBio Med. (2019) 40:135–50. 10.1016/j.ebiom.2018.12.016 PubMed DOI PMC
Chakrabarty AM. Microorganisms and cancer: quest for a therapy. J Bacteriol. (2003) 185:2683–6. 10.1128/jb.185.9.2683-2686.2003 PubMed DOI PMC
Coley WB. The Treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. (1910) 3:1–48. PubMed PMC
Khan MM, Ernst O, Sun J, Fraser IDC, Ernst RK, Goodlett DR, et al. . Mass spectrometry-based structural analysis and systems immunoproteomics strategies for deciphering the host response to endotoxin. J Mol Biol. (2018) 430:2641–60. 10.1016/j.jmb.2018.06.032 PubMed DOI
Roberts NJ, Zhang L, Janku F, Collins A, Bai RY, Staedtke V, et al. . Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci Transl Med. (2014) 6:249ra111. 10.1126/scitranslmed.3008982 PubMed DOI PMC
Agrawal N, Bettegowda C, Cheong I, Geschwind JF, Drake CG, Hipkiss EL, et al. . Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc Natl Acad Sci USA. (2004) 101:15172–7. 10.1073/pnas.0406242101 PubMed DOI PMC
Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol. (1976) 116:180–3. PubMed
Fuge O, Vasdev N, Allchorne P, Green JS. Immunotherapy for bladder cancer. Res Rep Urol. (2015) 7:65–79. 10.2147/RRU.S63447 PubMed DOI PMC
D'Agostini C, Pica F, Febbraro G, Grelli S, Chiavaroli C, Garaci E. Antitumour effect of OM-174 and cyclophosphamide on murine B16 melanoma in different experimental conditions. Int Immunopharmacol. (2005) 5:1205–12. 10.1016/j.intimp.2005.02.013 PubMed DOI
Takeda Y, Kataoka K, Yamagishi J, Ogawa S, Seya T, Matsumoto M. A TLR3-specific adjuvant relieves innate resistance to PD-L1 blockade without cytokine toxicity in tumor vaccine immunotherapy. Cell Rep. (2017) 19:1874–87. 10.1016/j.celrep.2017.05.015 PubMed DOI
Dhodapkar MV, Sznol M, Zhao B, Wang D, Carvajal RD, Keohan ML, et al. . Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med. (2014) 6:232ra51. 10.1126/scitranslmed.3008068 PubMed DOI PMC
Gregg KA, Harberts E, Gardner FM, Pelletier MR, Cayatte C, Yu L, et al. . Rationally designed TLR4 ligands for vaccine adjuvant discovery. MBio. (2017) 8:e00492–17. 10.1128/mBio.00492-17 PubMed DOI PMC
Shi M, Chen X, Ye K, Yao Y, Li Y. Application potential of toll-like receptors in cancer immunotherapy: systematic review. Medicine. (2016) 95:e3951. 10.1097/MD.0000000000003951 PubMed DOI PMC
Brackett CM, Kojouharov B, Veith J, Greene KF, Burdelya LG, Gollnick SO, et al. . Toll-like receptor-5 agonist, entolimod, suppresses metastasis and induces immunity by stimulating an NK-dendritic-CD8+ T-cell axis. Proc Natl Acad Sci USA. (2016) 113:E874–83. 10.1073/pnas.1521359113 PubMed DOI PMC
Bubna AK. Imiquimod - Its role in the treatment of cutaneous malignancies. Indian J Pharmacol. (2015) 47:354–9. 10.4103/0253-7613.161249 PubMed DOI PMC
Zhao BG, Vasilakos JP, Tross D, Smirnov D, Klinman DM. Combination therapy targeting toll like receptors 7, 8 and 9 eliminates large established tumors. J Immunother Cancer. (2014) 2:12. 10.1186/2051-1426-2-12 PubMed DOI PMC
Sato-Kaneko F, Yao S, Ahmadi A, Zhang SS, Hosoya T, Kaneda MM, et al. . Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight. (2017) 2:93397. 10.1172/jci.insight.93397 PubMed DOI PMC
Adamus T, Kortylewski M. The revival of CpG oligonucleotide-based cancer immunotherapies. Contemp Oncol. (2018) 22:56–60. 10.5114/wo.2018.73887 PubMed DOI PMC
Awasthi S. Toll-like receptor-4 modulation for cancer immunotherapy. Front Immunol. (2014) 5:328. 10.3389/fimmu.2014.00328 PubMed DOI PMC
Jin B, Sun T, Yu XH, Yang YX, Yeo AE. The effects of TLR activation on T-cell development and differentiation. Clin Dev Immunol. (2012) 2012:836485. 10.1155/2012/836485 PubMed DOI PMC
Cen X, Liu S, Cheng K. The role of toll-like receptor in inflammation and tumor immunity. Front Pharmacol. (2018) 9:878. 10.3389/fphar.2018.00878 PubMed DOI PMC
Kabelitz D. Expression and function of toll-like receptors in T lymphocytes. Curr Opin Immunol. (2007) 19:39–45. 10.1016/j.coi.2006.11.007 PubMed DOI
Rahman AH, Taylor DK, Turka LA. The contribution of direct TLR signaling to T cell responses. Immunol Res. (2009) 45:25–36. 10.1007/s12026-009-8113-x PubMed DOI PMC
Nyirenda MH, Sanvito L, Darlington PJ, O'Brien K, Zhang GX, Constantinescu CS, et al. . TLR2 stimulation drives human naive and effector regulatory T cells into a Th17-like phenotype with reduced suppressive function. J Immunol. (2011) 187:2278–90. 10.4049/jimmunol.1003715 PubMed DOI
Liu H, Komai-Koma M, Xu D, Liew FY. Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci USA. (2006) 103:7048–53. 10.1073/pnas.0601554103 PubMed DOI PMC
Carpentier A, Metellus P, Ursu R, Zohar S, Lafitte F, Barrié M, et al. . Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol. (2010) 12:401–8. 10.1093/neuonc/nop047 PubMed DOI PMC
Weigel BJ, Cooley S, DeFor T, Weisdorf DJ, Panoskaltsis-Mortari A, Chen W, et al. . Prolonged subcutaneous administration of 852A, a novel systemic toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced hematologic malignancies. Am J Hematol. (2012) 87:953–6. 10.1002/ajh.23280 PubMed DOI PMC
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. (2011) 144:646–74. 10.1016/j.cell.2011.02.013 PubMed DOI
Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. (1986) 315:1650–9. 10.1056/NEJM198612253152606 PubMed DOI
DeNardo DG, Andreu P, Coussens LM. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev. (2010) 29:309–16. 10.1007/s10555-010-9223-6 PubMed DOI PMC
He W, Liu Q, Wang L, Chen W, Li N, Cao X. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol. (2007) 44:2850–9. 10.1016/j.molimm.2007.01.022 PubMed DOI
Chochi K, Ichikura T, Kinoshita M, Majima T, Shinomiya N, Tsujimoto H, et al. . Helicobacter pylori augments growth of gastric cancers via the lipopolysaccharide-toll-like receptor 4 pathway whereas its lipopolysaccharide attenuates antitumor activities of human mononuclear cells. Clin Cancer Res. (2008) 14:2909–17. 10.1158/1078-0432.CCR-07-4467 PubMed DOI
Huang B, Zhao J, Shen S, Li H, He KL, Shen GX, et al. . Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res. (2007) 67:4346–52. 10.1158/0008-5472.CAN-06-4067 PubMed DOI
Garcia-Manero G, Montalban-Bravo G, Yang H, Wei Y, Alvarado Y, DiNardo CD, et al. A clinical study of OPN-305, a toll-like receptor 2 (TLR-2) antibody, in patients with lower risk myelodysplastic syndromes (MDS) that have received prior hypomethylating agent (HMA) therapy. Blood. (2016) 128:227 10.1182/blood.V128.22.227.227 PubMed DOI
Kam AYF, Piryani SO, McCall CM, Park HS, Rizzieri DA, Doan PL. Targeting high mobility group box-1 (HMGB1) promotes cell death in myelodysplastic syndrome. Clin Cancer Res. (2019) 25:4155–67. 10.1158/1078-0432.CCR-18-3517 PubMed DOI PMC
Kovacsovics TJ, Mims A, Salama ME, Pantin J, Rao N, Kosak KM, et al. . Combination of the low anticoagulant heparin CX-01 with chemotherapy for the treatment of acute myeloid leukemia. Blood Adv. (2018) 2:381–9. 10.1182/bloodadvances.2017013391 PubMed DOI PMC
Varney ME, Melgar K, Niederkorn M, Smith M, Barreyro L, Starczynowski DT. Deconstructing innate immune signaling in myelodysplastic syndromes. Exp Hematol. (2015) 43:587–98. 10.1016/j.exphem.2015.05.016 PubMed DOI PMC
Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int. (2015) 15:106. 10.1186/s12935-015-0260-7 PubMed DOI PMC
Kaczanowska S, Joseph AM, Davila E. TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol. (2013) 93:847–63. 10.1189/jlb.1012501 PubMed DOI PMC
Basith S, Manavalan B, Yoo TH, Kim SG, Choi S. Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res. (2012) 35:1297–316. 10.1007/s12272-012-0802-7 PubMed DOI
Dajon M, Iribarren K, Cremer I. Toll-like receptor stimulation in cancer: a pro- and anti-tumor double-edged sword. Immunobiology. (2017) 222:89–100. 10.1016/j.imbio.2016.06.009 PubMed DOI
Braunstein MJ, Kucharczyk J, Adams S. Targeting toll-like receptors for cancer therapy. Target Oncol. (2018) 13:583–98. 10.1007/s11523-018-0589-7 PubMed DOI
Piras V, Selvarajoo K. Beyond MyD88 and TRIF pathways in toll-like receptor signaling. Front Immunol. (2014) 5:70. 10.3389/fimmu.2014.00070 PubMed DOI PMC
Wang L, Yu K, Zhang X, Yu S. Dual functional roles of the MyD88 signaling in colorectal cancer development. Biomed Pharmacother. (2018) 107:177–84. 10.1016/j.biopha.2018.07.139 PubMed DOI
So EY, Ouchi T. The application of Toll like receptors for cancer therapy. Int J Biol Sci. (2010) 6:675–81. 10.7150/ijbs.6.675 PubMed DOI PMC
Deguine J, Barton GM. MyD88: a central player in innate immune signaling. F1000Prime Rep. (2014) 6:97. 10.12703/P6-97 PubMed DOI PMC
Wang JQ, Jeelall YS, Ferguson LL, Horikawa K. Toll-like receptors and cancer: MYD88 mutation and inflammation. Front Immunol. (2014) 5:367. 10.3389/fimmu.2014.00367 PubMed DOI PMC
Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, et al. . Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity. (1998) 9:143–50. PubMed
Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol. (2000) 165:5392–6. 10.4049/jimmunol.165.10.5392 PubMed DOI
Scanga CA, Aliberti J, Jankovic D, Tilloy F, Bennouna S, Denkers EY, et al. . Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J Immunol. (2002) 168:5997–6001. 10.4049/jimmunol.168.12.5997 PubMed DOI
Kfoury A, Le Corf K, El Sabeh R, Journeaux A, Badran B, Hussein N, et al. . MyD88 in DNA repair and cancer cell resistance to genotoxic drugs. J Natl Cancer Inst. (2013) 105:937–46. 10.1093/jnci/djt120 PubMed DOI PMC
Williamson EA, Hromas R. Repressing DNA repair to enhance chemotherapy: targeting MyD88 in colon cancer. J Natl Cancer Inst. (2013) 105:926–7. 10.1093/jnci/djt148 PubMed DOI PMC
Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, et al. . Oncogenically active MYD88 mutations in human lymphoma. Nature. (2011) 470:115–9. 10.1038/nature09671 PubMed DOI PMC
Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N, et al. . Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. (2011) 475:101–5. 10.1038/nature10113 PubMed DOI PMC
Yu X, Li W, Deng Q, Li L, Hsi ED, Young KH, et al. . L265P Mutation in lymphoid malignancies. Cancer Res. (2018) 78:2457–62. 10.1158/0008-5472.CAN-18-0215 PubMed DOI
New M, Sheikh S, Bekheet M, Olzscha H, Thezenas ML, Care MA, et al. . TLR adaptor protein MYD88 mediates sensitivity to HDAC inhibitors via a cytokine-dependent mechanism. Cancer Res. (2016) 76:6975–87. 10.1158/0008-5472.CAN-16-0504 PubMed DOI
Block MS, Vierkant RA, Rambau PF, Winham SJ, Wagner P, Traficante N, et al. . MyD88 and TLR4 expression in epithelial ovarian cancer. Mayo Clin Proc. (2018) 93:307–20. 10.1016/j.mayocp.2017.10.023 PubMed DOI PMC
Li WL, Xiao MS, Zhang DF, Yu D, Yang RX, Li XY, et al. . Mutation and expression analysis of the IDH1, IDH2, DNMT3A, and MYD88 genes in colorectal cancer. Gene. (2014) 546:263–70. 10.1016/j.gene.2014.05.070 PubMed DOI
Aras S, Zaidi MR. TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer. (2017) 117:1583–91. 10.1038/bjc.2017.356 PubMed DOI PMC
Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol. (2017) 10:58. 10.1186/s13045-017-0430-2 PubMed DOI PMC
van Dalen FJ, van Stevendaal MHME, Fennemann FL, Verdoes M, Ilina O. Molecular repolarisation of tumour-associated macrophages. Molecules. (2018) 24:E9. 10.3390/molecules24010009 PubMed DOI PMC
Müller E, Christopoulos PF, Halder S, Lunde A, Beraki K, Speth M, et al. . Toll-like receptor ligands and interferon-γ synergize for induction of antitumor M1 macrophages. Front Immunol. (2017) 8:1383. 10.3389/fimmu.2017.01383 PubMed DOI PMC
Müller E, Speth M, Christopoulos PF, Lunde A, Avdagic A, Øynebråten I, et al. . Both type I and type II interferons can activate antitumor M1 macrophages when combined with TLR stimulation. Front Immunol. (2018) 9:2520. 10.3389/fimmu.2018.02520 PubMed DOI PMC
Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. (2018) 2:578–88. 10.1038/s41551-018-0236-8 PubMed DOI PMC
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. . PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. (2014) 515:568–71. 10.1038/nature13954 PubMed DOI PMC
Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. . Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. (2014) 515:563–7. 10.1038/nature14011 PubMed DOI PMC
Matsumoto M, Takeda Y, Tatematsu M, Seya T. Toll-like receptor 3 signal in dendritic cells benefits cancer immunotherapy. Front Immunol. (2017) 8:1897. 10.3389/fimmu.2017.01897 PubMed DOI PMC
Lampson LA. Editorial: immunotherapy for tumor in the brain: insights from-and for-other tumor sites. Front Oncol. (2018) 8:128. 10.3389/fonc.2018.00128 PubMed DOI PMC
Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, et al. . Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. (2018) 20:184–91. 10.1093/neuonc/nox175 PubMed DOI PMC
Thompson EM, Frenkel EP, Neuwelt EA. The paradoxical effect of bevacizumab in the therapy of malignant gliomas. Neurology. (2011) 76:87–93. 10.1212/WNL.0b013e318204a3af PubMed DOI PMC
Curtin JF, Liu N, Candolfi M, Xiong W, Assi H, Yagiz K, et al. . HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med. (2009) 6:e10. 10.1371/journal.pmed.1000010 PubMed DOI PMC
Curtin JF, King GD, Barcia C, Liu C, Hubert FX, Guillonneau C, et al. . Fms-like tyrosine kinase 3 ligand recruits plasmacytoid dendritic cells to the brain. J Immunol. (2006) 176:3566–77. 10.4049/jimmunol.176.6.3566 PubMed DOI PMC
Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. . Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. (2007) 13:1050–9. 10.1038/nm1622 PubMed DOI
Krieg AM. Development of TLR9 agonists for cancer therapy. J Clin Invest. (2007) 117:1184–94. 10.1172/JCI31414 PubMed DOI PMC
Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. (2017) 27:109–18. 10.1038/cr.2016.151 PubMed DOI PMC
Zaini RG, Al-Rehaili AA. The therapeutic strategies of regulatory T cells in malignancies and stem cell transplantations. J Oncol. (2019) 2019:5981054. 10.1155/2019/5981054 PubMed DOI PMC
LaRosa DF, Gelman AE, Rahman AH, Zhang J, Turka LA, Walsh PT. CpG DNA inhibits CD4+CD25+ Treg suppression through direct MyD88-dependent costimulation of effector CD4+ T cells. Immunol Lett. (2007) 108:183–8. 10.1016/j.imlet.2006.12.007 PubMed DOI PMC
Sutmuller RP, den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ, et al. . Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest. (2006) 116:485–94. 10.1172/JCI25439 PubMed DOI PMC
Lee MK, Xu S, Fitzpatrick EH, Sharma A, Graves HL, Czerniecki BJ. Inhibition of CD4+CD25+ regulatory T cell function and conversion into Th1-like effectors by a Toll-like receptor-activated dendritic cell vaccine. PLoS ONE. (2013) 8:e74698. 10.1371/journal.pone.0074698 PubMed DOI PMC
Berk E, Xu S, Czerniecki BJ. Dendritic cells matured in the presence of TLR ligands overcome the immunosuppressive functions of regulatory T cells. Oncoimmunology. (2014) 3:e27617. 10.4161/onci.27617 PubMed DOI PMC
Diaz-Montero CM, Finke J, Montero AJ. Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications. Semin Oncol. (2014) 41:174–84. 10.1053/j.seminoncol.2014.02.003 PubMed DOI PMC
Saint-Jean M, Knol AC, Nguyen JM, Khammari A, Dreno B. TLR expression in human melanoma cells. Eur J Dermatol. (2011) 21:899–905. 10.1684/ejd.2011.1526 PubMed DOI