Mannan-BAM, TLR Ligands, Anti-CD40 Antibody (MBTA) Vaccine Immunotherapy: A Review of Current Evidence and Applications in Glioblastoma
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33810617
PubMed Central
PMC8037428
DOI
10.3390/ijms22073455
PII: ijms22073455
Knihovny.cz E-zdroje
- Klíčová slova
- T cell, Toll-like receptor, Toll-like receptor ligands, adaptive immunity, anti-CD40, glioblastoma, immunotherapy, innate immunity, mannan-BAM, metastatic, neutrophil, pathogen-associated molecular patterns,
- MeSH
- antigen prezentující buňky chemie MeSH
- antigeny CD40 imunologie MeSH
- epitopy chemie MeSH
- glioblastom imunologie terapie MeSH
- imunofenotypizace MeSH
- imunoterapie metody MeSH
- lékařská onkologie trendy MeSH
- lidé MeSH
- ligandy MeSH
- metastázy nádorů MeSH
- myši MeSH
- nádory mozku imunologie terapie MeSH
- peptidy chemie MeSH
- protinádorové vakcíny MeSH
- výpočetní biologie MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antigeny CD40 MeSH
- epitopy MeSH
- ligandy MeSH
- peptidy MeSH
- protinádorové vakcíny MeSH
The foundation of precision immunotherapy in oncology is rooted in computational biology and patient-derived sample sequencing to enrich for and target immunogenic epitopes. Discovery of these tumor-specific epitopes through tumor sequencing has revolutionized patient outcomes in many types of cancers that were previously untreatable. However, these therapeutic successes are far from universal, especially with cancers that carry high intratumoral heterogeneity such as glioblastoma (GBM). Herein, we present the technical aspects of Mannan-BAM, TLR Ligands, Anti-CD40 Antibody (MBTA) vaccine immunotherapy, an investigational therapeutic that potentially circumvents the need for in silico tumor-neoantigen enrichment. We then review the most promising GBM vaccination strategies to contextualize the MBTA vaccine. By reviewing current evidence using translational tumor models supporting MBTA vaccination, we evaluate the underlying principles that validate its clinical applicability. Finally, we showcase the translational potential of MBTA vaccination as a potential immunotherapy in GBM, along with established surgical and immunologic cancer treatment paradigms.
Department of Medical Biology University of South Bohemia Cheske Budejovice 37005 Czech Republic
Department of Neurosurgery Medstar Georgetown Hospital Washington DC 20007 USA
Department of Neurosurgery University of Nebraska Medical Center Omaha NE 68198 USA
Neuro Oncology Branch National Cancer Institute National Institutes of Health Bethesda MD 20892 USA
Section on Medical Neuroendocrinology NICHD DIR National Institutes of Health Bethesda MD 20892 USA
Zobrazit více v PubMed
Caisova V., Li L., Gupta G., Jochmanova I., Jha A., Uher O., Huynh T.-T., Miettinen M., Pang Y., Abunimer L., et al. The Significant Reduction or Complete Eradication of Subcutaneous and Metastatic Lesions in a Pheochromocytoma Mouse Model after Immunotherapy Using Mannan-BAM, TLR Ligands, and Anti-CD40. Cancers. 2019;11:654. doi: 10.3390/cancers11050654. PubMed DOI PMC
Caisová V., Uher O., Nedbalová P., Jochmanová I., Kvardová K., Masáková K., Krejčová G., Paďouková L., Chmelař J., Kopecký J., et al. Effective cancer immunotherapy based on combination of TLR agonists with stimulation of phagocytosis. Int. Immunopharmacol. 2018;59:86–96. doi: 10.1016/j.intimp.2018.03.038. PubMed DOI
Kato K., Itoh C., Yasukouchi T., Nagamune T. Rapid Protein Anchoring into the Membranes of Mammalian Cells Using Oleyl Chain and Poly(ethylene glycol) Derivatives. Biotechnol. Prog. 2004;20:897–904. doi: 10.1021/bp0342093. PubMed DOI
Janotová T., Jalovecká M., Auerová M., Švecová I., Bruzlová P., Maierová V., Kumžáková Z., Čunátová Š., Vlčková Z., Caisova V., et al. The Use of Anchored Agonists of Phagocytic Receptors for Cancer Immunotherapy: B16-F10 Murine Melanoma Model. PLoS ONE. 2014;9:e85222. doi: 10.1371/journal.pone.0085222. PubMed DOI PMC
Figueiredo R.T., Carneiro L.A.M., Bozza M.T. Fungal Surface and Innate Immune Recognition of Filamentous Fungi. Front. Microbiol. 2011;2:248. doi: 10.3389/fmicb.2011.00248. PubMed DOI PMC
Hassan S.B., Sørensen J.F., Olsen B.N., Pedersen A.E. Anti-CD40-mediated cancer immunotherapy: An update of recent and ongoing clinical trials. Immunopharmacol. Immunotoxicol. 2014;36:96–104. doi: 10.3109/08923973.2014.890626. PubMed DOI
Caisová V., Vieru A.M., Kumžáková Z., Glaserová S., Husníková H., Vácová N., Krejčová G., Paďouková L., Jochmanová I., Wolf K.I., et al. Innate immunity based cancer immunotherapy: B16-F10 murine melanoma model. BMC Cancer. 2016;16:940. doi: 10.1186/s12885-016-2982-x. PubMed DOI PMC
Urban-Wojciuk Z., Khan M.M., Oyler B.L., Fåhraeus R., Marek-Trzonkowska N., Nita-Lazar A., Hupp T.R., Goodlett D.R. The Role of TLRs in Anti-cancer Immunity and Tumor Rejection. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.02388. PubMed DOI PMC
Seo H.S., Michalek S.M., Nahm M.H. Lipoteichoic Acid Is Important in Innate Immune Responses to Gram-Positive Bacteria. Infect. Immun. 2007;76:206–213. doi: 10.1128/IAI.01140-07. PubMed DOI PMC
Steinhagen F., Kinjo T., Bode C., Klinman D.M. TLR-based immune adjuvants. Vaccine. 2011;29:3341–3355. doi: 10.1016/j.vaccine.2010.08.002. PubMed DOI PMC
Bianchi F., Pretto S., Tagliabue E., Balsari A., Sfondrini L. Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol. Ther. 2017;18:747–756. doi: 10.1080/15384047.2017.1373220. PubMed DOI PMC
Rook A.H., Gelfand J.M., Wysocka M., Troxel A.B., Benoit B.M., Surber C., Elenitsas R., Buchanan M.A., Leahy D.S., Watanabe R., et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood. 2015;126:1452–1461. doi: 10.1182/blood-2015-02-630335. PubMed DOI PMC
Wu J.J., Huang D.B., Tyring S.K. Resiquimod: A new immune response modifier with potential as a vaccine adjuvant for Th1 immune responses. Antivir. Res. 2004;64:79–83. doi: 10.1016/j.antiviral.2004.07.002. PubMed DOI
Vonderheide R.H., Glennie M.J. Agonistic CD40 Antibodies and Cancer Therapy. Clin. Cancer Res. 2013;19:1035–1043. doi: 10.1158/1078-0432.CCR-12-2064. PubMed DOI PMC
Moreau M., Yasmin-Karim S., Kunjachan S., Sinha N., Gremse F., Kumar R., Chow K.F., Ngwa W. Priming the Abscopal Effect Using Multifunctional Smart Radiotherapy Biomaterials Loaded with Immunoadjuvants. Front. Oncol. 2018;8:56. doi: 10.3389/fonc.2018.00056. PubMed DOI PMC
Fransen M.F., Sluijter M., Morreau H., Arens R., Melief C.J. Local Activation of CD8 T Cells and Systemic Tumor Eradication without Toxicity via Slow Release and Local Delivery of Agonistic CD40 Antibody. Clin. Cancer Res. 2011;17:2270–2280. doi: 10.1158/1078-0432.CCR-10-2888. PubMed DOI
Hunn M.K., Farrand K.J., Broadley K.W., Weinkove R., Ferguson P., Miller R.J., Field C.S., Petersen T., McConnell M.J., Hermans I.F. Vaccination with Irradiated Tumor Cells Pulsed with an Adjuvant That Stimulates NKT Cells Is an Effective Treatment for Glioma. Clin. Cancer Res. 2012;18:6446–6459. doi: 10.1158/1078-0432.CCR-12-0704. PubMed DOI
Curry W.T., Gorrepati R., Piesche M., Sasada T., Agarwalla P., Jones P.S., Gerstner E.R., Golby A.J., Batchelor T.T., Wen P.Y., et al. Vaccination with Irradiated Autologous Tumor Cells Mixed with Irradiated GM-K562 Cells Stimulates Antitumor Immunity and T Lymphocyte Activation in Patients with Recurrent Malignant Glioma. Clin. Cancer Res. 2016;22:2885–2896. doi: 10.1158/1078-0432.CCR-15-2163. PubMed DOI PMC
Tian H., Shi G., Yang G., Zhang J., Li Y., Du T., Wang J., Xu F., Cheng L., Zhang X., et al. Cellular immunotherapy using irradiated lung cancer cell vaccine co-expressing GM-CSF and IL-18 can induce significant antitumor effects. BMC Cancer. 2014;14:48. doi: 10.1186/1471-2407-14-48. PubMed DOI PMC
Koster B.D., Santegoets S.J.A.M., Harting J., Baars A., Van Ham S.M., Scheper R.J., Hooijberg E., De Gruijl T.D., Eertwegh A.J.M.V.D. Autologous tumor cell vaccination combined with systemic CpG-B and IFN-α promotes immune activation and induces clinical responses in patients with metastatic renal cell carcinoma: A phase II trial. Cancer Immunol. Immunother. 2019;68:1025–1035. doi: 10.1007/s00262-019-02320-0. PubMed DOI PMC
Uyldegroot C., Vermorken J., Hannajr M., Verboom P., Groot M., Bonsel G., Meijer C., Pinedo H. Immunotherapy with autologous tumor cell-BCG vaccine in patients with colon cancer: A prospective study of medical and economic benefits. Vaccine. 2005;23:2379–2387. doi: 10.1016/j.vaccine.2005.01.015. PubMed DOI
Steiner H.H., Bonsanto M.M., Beckhove P., Brysch M., Geletneky K., Ahmadi R., Schuele-Freyer R., Kremer P., Ranaie G., Matejic D., et al. Antitumor Vaccination of Patients With Glioblastoma Multiforme: A Pilot Study to Assess Feasibility, Safety, and Clinical Benefit. J. Clin. Oncol. 2004;22:4272–4281. doi: 10.1200/JCO.2004.09.038. PubMed DOI
Medina R., Wang H., Caisová V., Cui J., Indig I.H., Uher O., Ye J., Nwankwo A., Sanchez V., Wu T., et al. Induction of Immune Response against Metastatic Tumors via Vaccination of Mannan-BAM, TLR Ligands, and Anti-CD40 Antibody (MBTA) Adv. Ther. 2020;3:2000044. doi: 10.1002/adtp.202000044. PubMed DOI PMC
Belka C. The fate of irradiated tumor cells. Oncogene. 2005;25:969–971. doi: 10.1038/sj.onc.1209175. PubMed DOI
Ostrom Q.T., Patil N., Cioffi G., Waite K., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-oncology. 2020;22:iv1–iv96. doi: 10.1093/neuonc/noaa200. PubMed DOI PMC
Xu H., Chen J., Xu H., Qin Z. Geographic variations in the incidence of glioblastoma and prognostic factors predictive of overall survival in US adults from 2004-2013. Front. Aging Neurosci. 2017;9:352. doi: 10.3389/fnagi.2017.00352. PubMed DOI PMC
Weenink B., French P.J., Smitt P.A.S., Debets R., Geurts M. Immunotherapy in Glioblastoma: Current Shortcomings and Future Perspectives. Cancers. 2020;12:751. doi: 10.3390/cancers12030751. PubMed DOI PMC
Ampie L., Choy W., Lamano J.B., Fakurnejad S., Bloch O., Parsa A.T. Heat shock protein vaccines against glioblastoma: From bench to bedside. J. Neuro-Oncol. 2015;123:441–448. doi: 10.1007/s11060-015-1837-7. PubMed DOI PMC
Liau L.M., Prins R.M., Kiertscher S.M., Odesa S.K., Kremen T.J., Giovannone A.J., Lin J.-W., Chute D.J., Mischel P.S., Cloughesy T.F., et al. Dendritic Cell Vaccination in Glioblastoma Patients Induces Systemic and Intracranial T-cell Responses Modulated by the Local Central Nervous System Tumor Microenvironment. Clin. Cancer Res. 2005;11:5515–5525. doi: 10.1158/1078-0432.CCR-05-0464. PubMed DOI
Akgül S., Patch A.-M., D’Souza R.C., Mukhopadhyay P., Nones K., Kempe S., Kazakoff S.H., Jeffree R.L., Stringer B.W., Pearson J.V., et al. Intratumoural Heterogeneity Underlies Distinct Therapy Responses and Treatment Resistance in Glioblastoma. Cancers. 2019;11:190. doi: 10.3390/cancers11020190. PubMed DOI PMC
Gajewski T.F., Schreiber H., Fu Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013;14:1014–1022. doi: 10.1038/ni.2703. PubMed DOI PMC
Dudley M.E., Yang J.C., Sherry R., Hughes M.S., Royal R., Kammula U., Robbins P.F., Huang J., Citrin D.E., Leitman S.F., et al. Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens. J. Clin. Oncol. 2008;26:5233–5239. doi: 10.1200/JCO.2008.16.5449. PubMed DOI PMC
Wang H., Medina R., Caisova V., Uher O., Zenka J., Pacak K., Zhuang Z. Immu-23. Targeting Metastatic And CNS Tumors Via Mannan-Bam, TLR Ligands and Anti-Cd40 Antibody. Neuro-oncology. 2019;21:vi123–vi124. doi: 10.1093/neuonc/noz175.516. DOI
Gromeier M., Brown M.C., Zhang G., Lin X., Chen Y., Wei Z., Beaubier N., Yan H., Herndon J.E., Desjardins A., et al. Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy. Nat. Commun. 2021;12:1–7. doi: 10.1038/s41467-020-20469-6. PubMed DOI PMC
Wank M., Schilling D., Schmid T.E., Meyer B., Gempt J., Barz M., Schlegel J., Liesche F., Kessel K.A., Wiestler B., et al. Human Glioma Migration and Infiltration Properties as a Target for Personalized Radiation Medicine. Cancers. 2018;10:456. doi: 10.3390/cancers10110456. PubMed DOI PMC
Santomasso B., Bachier C., Westin J., Rezvani K., Shpall E.J. The Other Side of CAR T-Cell Therapy: Cytokine Release Syndrome, Neurologic Toxicity, and Financial Burden. Am. Soc. Clin. Oncol. Educ. Book. 2019;39:433–444. doi: 10.1200/EDBK_238691. PubMed DOI
Gust J., Hay K.A., Hanafi L.-A., Li D., Myerson D., Gonzalez-Cuyar L.F., Yeung C., Liles W.C., Wurfel M., Lopez J.A., et al. Endothelial Activation and Blood–Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017;7:1404–1419. doi: 10.1158/2159-8290.CD-17-0698. PubMed DOI PMC