Mannan-BAM, TLR Ligands, Anti-CD40 Antibody (MBTA) Vaccine Immunotherapy: A Review of Current Evidence and Applications in Glioblastoma

. 2021 Mar 26 ; 22 (7) : . [epub] 20210326

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33810617

The foundation of precision immunotherapy in oncology is rooted in computational biology and patient-derived sample sequencing to enrich for and target immunogenic epitopes. Discovery of these tumor-specific epitopes through tumor sequencing has revolutionized patient outcomes in many types of cancers that were previously untreatable. However, these therapeutic successes are far from universal, especially with cancers that carry high intratumoral heterogeneity such as glioblastoma (GBM). Herein, we present the technical aspects of Mannan-BAM, TLR Ligands, Anti-CD40 Antibody (MBTA) vaccine immunotherapy, an investigational therapeutic that potentially circumvents the need for in silico tumor-neoantigen enrichment. We then review the most promising GBM vaccination strategies to contextualize the MBTA vaccine. By reviewing current evidence using translational tumor models supporting MBTA vaccination, we evaluate the underlying principles that validate its clinical applicability. Finally, we showcase the translational potential of MBTA vaccination as a potential immunotherapy in GBM, along with established surgical and immunologic cancer treatment paradigms.

Zobrazit více v PubMed

Caisova V., Li L., Gupta G., Jochmanova I., Jha A., Uher O., Huynh T.-T., Miettinen M., Pang Y., Abunimer L., et al. The Significant Reduction or Complete Eradication of Subcutaneous and Metastatic Lesions in a Pheochromocytoma Mouse Model after Immunotherapy Using Mannan-BAM, TLR Ligands, and Anti-CD40. Cancers. 2019;11:654. doi: 10.3390/cancers11050654. PubMed DOI PMC

Caisová V., Uher O., Nedbalová P., Jochmanová I., Kvardová K., Masáková K., Krejčová G., Paďouková L., Chmelař J., Kopecký J., et al. Effective cancer immunotherapy based on combination of TLR agonists with stimulation of phagocytosis. Int. Immunopharmacol. 2018;59:86–96. doi: 10.1016/j.intimp.2018.03.038. PubMed DOI

Kato K., Itoh C., Yasukouchi T., Nagamune T. Rapid Protein Anchoring into the Membranes of Mammalian Cells Using Oleyl Chain and Poly(ethylene glycol) Derivatives. Biotechnol. Prog. 2004;20:897–904. doi: 10.1021/bp0342093. PubMed DOI

Janotová T., Jalovecká M., Auerová M., Švecová I., Bruzlová P., Maierová V., Kumžáková Z., Čunátová Š., Vlčková Z., Caisova V., et al. The Use of Anchored Agonists of Phagocytic Receptors for Cancer Immunotherapy: B16-F10 Murine Melanoma Model. PLoS ONE. 2014;9:e85222. doi: 10.1371/journal.pone.0085222. PubMed DOI PMC

Figueiredo R.T., Carneiro L.A.M., Bozza M.T. Fungal Surface and Innate Immune Recognition of Filamentous Fungi. Front. Microbiol. 2011;2:248. doi: 10.3389/fmicb.2011.00248. PubMed DOI PMC

Hassan S.B., Sørensen J.F., Olsen B.N., Pedersen A.E. Anti-CD40-mediated cancer immunotherapy: An update of recent and ongoing clinical trials. Immunopharmacol. Immunotoxicol. 2014;36:96–104. doi: 10.3109/08923973.2014.890626. PubMed DOI

Caisová V., Vieru A.M., Kumžáková Z., Glaserová S., Husníková H., Vácová N., Krejčová G., Paďouková L., Jochmanová I., Wolf K.I., et al. Innate immunity based cancer immunotherapy: B16-F10 murine melanoma model. BMC Cancer. 2016;16:940. doi: 10.1186/s12885-016-2982-x. PubMed DOI PMC

Urban-Wojciuk Z., Khan M.M., Oyler B.L., Fåhraeus R., Marek-Trzonkowska N., Nita-Lazar A., Hupp T.R., Goodlett D.R. The Role of TLRs in Anti-cancer Immunity and Tumor Rejection. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.02388. PubMed DOI PMC

Seo H.S., Michalek S.M., Nahm M.H. Lipoteichoic Acid Is Important in Innate Immune Responses to Gram-Positive Bacteria. Infect. Immun. 2007;76:206–213. doi: 10.1128/IAI.01140-07. PubMed DOI PMC

Steinhagen F., Kinjo T., Bode C., Klinman D.M. TLR-based immune adjuvants. Vaccine. 2011;29:3341–3355. doi: 10.1016/j.vaccine.2010.08.002. PubMed DOI PMC

Bianchi F., Pretto S., Tagliabue E., Balsari A., Sfondrini L. Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol. Ther. 2017;18:747–756. doi: 10.1080/15384047.2017.1373220. PubMed DOI PMC

Rook A.H., Gelfand J.M., Wysocka M., Troxel A.B., Benoit B.M., Surber C., Elenitsas R., Buchanan M.A., Leahy D.S., Watanabe R., et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood. 2015;126:1452–1461. doi: 10.1182/blood-2015-02-630335. PubMed DOI PMC

Wu J.J., Huang D.B., Tyring S.K. Resiquimod: A new immune response modifier with potential as a vaccine adjuvant for Th1 immune responses. Antivir. Res. 2004;64:79–83. doi: 10.1016/j.antiviral.2004.07.002. PubMed DOI

Vonderheide R.H., Glennie M.J. Agonistic CD40 Antibodies and Cancer Therapy. Clin. Cancer Res. 2013;19:1035–1043. doi: 10.1158/1078-0432.CCR-12-2064. PubMed DOI PMC

Moreau M., Yasmin-Karim S., Kunjachan S., Sinha N., Gremse F., Kumar R., Chow K.F., Ngwa W. Priming the Abscopal Effect Using Multifunctional Smart Radiotherapy Biomaterials Loaded with Immunoadjuvants. Front. Oncol. 2018;8:56. doi: 10.3389/fonc.2018.00056. PubMed DOI PMC

Fransen M.F., Sluijter M., Morreau H., Arens R., Melief C.J. Local Activation of CD8 T Cells and Systemic Tumor Eradication without Toxicity via Slow Release and Local Delivery of Agonistic CD40 Antibody. Clin. Cancer Res. 2011;17:2270–2280. doi: 10.1158/1078-0432.CCR-10-2888. PubMed DOI

Hunn M.K., Farrand K.J., Broadley K.W., Weinkove R., Ferguson P., Miller R.J., Field C.S., Petersen T., McConnell M.J., Hermans I.F. Vaccination with Irradiated Tumor Cells Pulsed with an Adjuvant That Stimulates NKT Cells Is an Effective Treatment for Glioma. Clin. Cancer Res. 2012;18:6446–6459. doi: 10.1158/1078-0432.CCR-12-0704. PubMed DOI

Curry W.T., Gorrepati R., Piesche M., Sasada T., Agarwalla P., Jones P.S., Gerstner E.R., Golby A.J., Batchelor T.T., Wen P.Y., et al. Vaccination with Irradiated Autologous Tumor Cells Mixed with Irradiated GM-K562 Cells Stimulates Antitumor Immunity and T Lymphocyte Activation in Patients with Recurrent Malignant Glioma. Clin. Cancer Res. 2016;22:2885–2896. doi: 10.1158/1078-0432.CCR-15-2163. PubMed DOI PMC

Tian H., Shi G., Yang G., Zhang J., Li Y., Du T., Wang J., Xu F., Cheng L., Zhang X., et al. Cellular immunotherapy using irradiated lung cancer cell vaccine co-expressing GM-CSF and IL-18 can induce significant antitumor effects. BMC Cancer. 2014;14:48. doi: 10.1186/1471-2407-14-48. PubMed DOI PMC

Koster B.D., Santegoets S.J.A.M., Harting J., Baars A., Van Ham S.M., Scheper R.J., Hooijberg E., De Gruijl T.D., Eertwegh A.J.M.V.D. Autologous tumor cell vaccination combined with systemic CpG-B and IFN-α promotes immune activation and induces clinical responses in patients with metastatic renal cell carcinoma: A phase II trial. Cancer Immunol. Immunother. 2019;68:1025–1035. doi: 10.1007/s00262-019-02320-0. PubMed DOI PMC

Uyldegroot C., Vermorken J., Hannajr M., Verboom P., Groot M., Bonsel G., Meijer C., Pinedo H. Immunotherapy with autologous tumor cell-BCG vaccine in patients with colon cancer: A prospective study of medical and economic benefits. Vaccine. 2005;23:2379–2387. doi: 10.1016/j.vaccine.2005.01.015. PubMed DOI

Steiner H.H., Bonsanto M.M., Beckhove P., Brysch M., Geletneky K., Ahmadi R., Schuele-Freyer R., Kremer P., Ranaie G., Matejic D., et al. Antitumor Vaccination of Patients With Glioblastoma Multiforme: A Pilot Study to Assess Feasibility, Safety, and Clinical Benefit. J. Clin. Oncol. 2004;22:4272–4281. doi: 10.1200/JCO.2004.09.038. PubMed DOI

Medina R., Wang H., Caisová V., Cui J., Indig I.H., Uher O., Ye J., Nwankwo A., Sanchez V., Wu T., et al. Induction of Immune Response against Metastatic Tumors via Vaccination of Mannan-BAM, TLR Ligands, and Anti-CD40 Antibody (MBTA) Adv. Ther. 2020;3:2000044. doi: 10.1002/adtp.202000044. PubMed DOI PMC

Belka C. The fate of irradiated tumor cells. Oncogene. 2005;25:969–971. doi: 10.1038/sj.onc.1209175. PubMed DOI

Ostrom Q.T., Patil N., Cioffi G., Waite K., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-oncology. 2020;22:iv1–iv96. doi: 10.1093/neuonc/noaa200. PubMed DOI PMC

Xu H., Chen J., Xu H., Qin Z. Geographic variations in the incidence of glioblastoma and prognostic factors predictive of overall survival in US adults from 2004-2013. Front. Aging Neurosci. 2017;9:352. doi: 10.3389/fnagi.2017.00352. PubMed DOI PMC

Weenink B., French P.J., Smitt P.A.S., Debets R., Geurts M. Immunotherapy in Glioblastoma: Current Shortcomings and Future Perspectives. Cancers. 2020;12:751. doi: 10.3390/cancers12030751. PubMed DOI PMC

Ampie L., Choy W., Lamano J.B., Fakurnejad S., Bloch O., Parsa A.T. Heat shock protein vaccines against glioblastoma: From bench to bedside. J. Neuro-Oncol. 2015;123:441–448. doi: 10.1007/s11060-015-1837-7. PubMed DOI PMC

Liau L.M., Prins R.M., Kiertscher S.M., Odesa S.K., Kremen T.J., Giovannone A.J., Lin J.-W., Chute D.J., Mischel P.S., Cloughesy T.F., et al. Dendritic Cell Vaccination in Glioblastoma Patients Induces Systemic and Intracranial T-cell Responses Modulated by the Local Central Nervous System Tumor Microenvironment. Clin. Cancer Res. 2005;11:5515–5525. doi: 10.1158/1078-0432.CCR-05-0464. PubMed DOI

Akgül S., Patch A.-M., D’Souza R.C., Mukhopadhyay P., Nones K., Kempe S., Kazakoff S.H., Jeffree R.L., Stringer B.W., Pearson J.V., et al. Intratumoural Heterogeneity Underlies Distinct Therapy Responses and Treatment Resistance in Glioblastoma. Cancers. 2019;11:190. doi: 10.3390/cancers11020190. PubMed DOI PMC

Gajewski T.F., Schreiber H., Fu Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013;14:1014–1022. doi: 10.1038/ni.2703. PubMed DOI PMC

Dudley M.E., Yang J.C., Sherry R., Hughes M.S., Royal R., Kammula U., Robbins P.F., Huang J., Citrin D.E., Leitman S.F., et al. Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens. J. Clin. Oncol. 2008;26:5233–5239. doi: 10.1200/JCO.2008.16.5449. PubMed DOI PMC

Wang H., Medina R., Caisova V., Uher O., Zenka J., Pacak K., Zhuang Z. Immu-23. Targeting Metastatic And CNS Tumors Via Mannan-Bam, TLR Ligands and Anti-Cd40 Antibody. Neuro-oncology. 2019;21:vi123–vi124. doi: 10.1093/neuonc/noz175.516. DOI

Gromeier M., Brown M.C., Zhang G., Lin X., Chen Y., Wei Z., Beaubier N., Yan H., Herndon J.E., Desjardins A., et al. Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy. Nat. Commun. 2021;12:1–7. doi: 10.1038/s41467-020-20469-6. PubMed DOI PMC

Wank M., Schilling D., Schmid T.E., Meyer B., Gempt J., Barz M., Schlegel J., Liesche F., Kessel K.A., Wiestler B., et al. Human Glioma Migration and Infiltration Properties as a Target for Personalized Radiation Medicine. Cancers. 2018;10:456. doi: 10.3390/cancers10110456. PubMed DOI PMC

Santomasso B., Bachier C., Westin J., Rezvani K., Shpall E.J. The Other Side of CAR T-Cell Therapy: Cytokine Release Syndrome, Neurologic Toxicity, and Financial Burden. Am. Soc. Clin. Oncol. Educ. Book. 2019;39:433–444. doi: 10.1200/EDBK_238691. PubMed DOI

Gust J., Hay K.A., Hanafi L.-A., Li D., Myerson D., Gonzalez-Cuyar L.F., Yeung C., Liles W.C., Wurfel M., Lopez J.A., et al. Endothelial Activation and Blood–Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017;7:1404–1419. doi: 10.1158/2159-8290.CD-17-0698. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...