In-Vitro Hemocompatibility of Polyaniline Functionalized by Bioactive Molecules

. 2019 Nov 11 ; 11 (11) : . [epub] 20191111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31718055

Grantová podpora
P2-0082 Slovenian Research Agency
17-05095S Grantová Agentura České Republiky

Hemocompatibility is an essential prerequisite for the application of materials in the field of biomedicine and biosensing. In addition, mixed ionic and electronic conductivity of conducting polymers is an advantageous property for these applications. Heparin-like materials containing sulfate, sulfamic, and carboxylic groups may have an anticoagulation effect. Therefore, sodium dodecylbenzenesulfonate, 2-aminoethane-1-sulfonic acid and N-(2-acetamido)-2-aminoethanesulfonic acid were used for modification of the representative of conducting polymers, polyaniline, and the resulting products were studied in the context of interactions with human blood. The anticoagulation activity was then correlated to surface energy and conductivity of the materials. Results show that anticoagulation activity is highly affected by the presence of suitable functional groups originating from the used heparin-like substances, and by the properties of polyaniline polymer itself.

Zobrazit více v PubMed

Rivnay J., Inal S., Collins B., Sessolo M., Stavrinidou E., Strakosas X., Tassone C., Delongchamp D., Malliaras G. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 2016;7:11287. doi: 10.1038/ncomms11287. PubMed DOI PMC

Ramanaviciene A., Kausaite-Minkstimiene A., Tautkus S., Ramanavicius A. Biocompatibility of polypyrrole particles: An in-vivo study in mice. J. Pharm. Pharm. 2007;59:311–315. doi: 10.1211/jpp.59.2.0017. PubMed DOI

Vaitkuviene A., Kaseta V., Voronovic J., Ramanauskaite G., Biziuleviciene G., Ramanaviciene A., Ramanavicius A. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization. J. Hazard. Mater. 2013;250:167–174. doi: 10.1016/j.jhazmat.2013.01.038. PubMed DOI

Vaitkuviene A., Ratautaite V., Mikoliunaite L., Kaseta V., Ramanauskaite G., Biziuleviciene G., Ramanaviciene A., Ramanavicius A. Some biocompatibility aspects of conducting polymer polypyrrole evaluated with bone marrow-derived stem cells. Colloid Surf. A. 2014;442:152–156. doi: 10.1016/j.colsurfa.2013.06.030. DOI

Humpolicek P., Kasparkova V., Saha P., Stejskal J. Biocompatibility of polyaniline. Synth. Met. 2012;162:722–727. doi: 10.1016/j.synthmet.2012.02.024. DOI

Stejskal J., Hajná M., Kašpárková V., Humpolíček P., Zhigunov A., Trchová M. Purification of a conducting polymer, polyaniline, for biomedical applications. Synth. Met. 2014;195:286–293. doi: 10.1016/j.synthmet.2014.06.020. DOI

Humpolíček P., Kašpárková V., Pacherník J., Stejskal J., Bober P., Capáková Z., Radaszkiewicz K.A., Junkar I., Lehocký M. The biocompatibility of polyaniline and polypyrrole: A comparative study of their cytotoxicity, embryotoxicity and impurity profile. Mater. Sci. Eng. C. 2018;91:303–310. doi: 10.1016/j.msec.2018.05.037. PubMed DOI

Li Y.L., Neoh K.G., Cen L., Kang E.T. Physicochemical and blood compatibility characterization of polypyrrole surface functionalized with heparin. Biotechnol. Bioeng. 2003;84:305–313. doi: 10.1002/bit.10757. PubMed DOI

Ferraz N., Carlsson D.O., Hong J., Larsson R., Fellstrom B., Nyholm L., Stromme M., Mihranyan A. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. J. R. Soc. Interface. 2012;9:1943–1955. doi: 10.1098/rsif.2012.0019. PubMed DOI PMC

Mao C., Zhu A.P., Wu Q., Chen X.B., Kim J.H., Shen J. New biocompatible polypyrrole-based films with good blood compatibility and high electrical conductivity. Colloid Surf. B. 2008;67:41–45. doi: 10.1016/j.colsurfb.2008.07.012. PubMed DOI

Humpolíček P., Kuceková Z., Kašpárková V., Pelková J., Modic M., Junkar I., Trchová M., Bober P., Stejskal J., Lehocký M. Blood coagulation and platelet adhesion on polyaniline films. Colloid Surf. B. 2015;133:278–285. doi: 10.1016/j.colsurfb.2015.06.008. PubMed DOI

Paneva D., Stoilova O., Manolova N., Danchev D., Lazarov Z., Rashkov I. Copolymers of 2-acryloylamido-2-methylpropanesulfonic acid and acrylic acid with anticoagulant activity. E-Polymers. 2003;3:11. doi: 10.1515/epoly.2003.3.1.665. DOI

Yancheva E., Paneva D., Danchev D., Mespouille L., Dubois P., Manolova N., Rashkov I. Polyelectrolyte complexes based on (quaternized) poly (2-dimethylamino)ethyl methacrylate: Behavior in contact with blood. Macromol. Biosci. 2007;7:940–954. doi: 10.1002/mabi.200700056. PubMed DOI

Šorm M., Nešpůrek S., Mrkvičková L., Kálal J., Vorlová Z. Anticoagulation activity of some sulfate-containing polymers of the methacrylate type. J. Polym. Sci. C. 1979;66:349–356. doi: 10.1002/polc.5070660132. DOI

Stejskal J., Gilbert R.G. Polyaniline. Preparation of a conducting polymer (IUPAC technical report) Pure Appl. Chem. 2002;74:857–867. doi: 10.1351/pac200274050857. DOI

Secomb T.W. Hemodynamics. Compr. Physiol. 2016;6:975–1003. PubMed PMC

Bober P., Humpolíček P., Pacherník J., Stejskal J., Lindfors T. Conducting polyaniline based cell culture substrate for embryonic stem cells and embryoid bodies. RSC Adv. 2015;5:50328–50335. doi: 10.1039/C5RA07504A. DOI

Li Y.M., Zhao R., Li X., Wang C.Y., Bao H.W., Wang S.D., Fang J., Huang J.Q., Wang C. Blood-compatible polyaniline coated electrospun polyurethane fiber scaffolds for enhanced adhesion and proliferation of human umbilical vein endothelial cells. Fiber. Polym. 2019;20:250–260. doi: 10.1007/s12221-019-8735-0. DOI

Zhang F., Kang E.T., Neoh K.G., Wang P., Tan K.L. Reactive coupling of poly(ethylene glycol) on electroactive polyaniline films for reduction in protein adsorption and platelet adhesion. Biomaterials. 2002;23:787–795. doi: 10.1016/S0142-9612(01)00184-3. PubMed DOI

Li Z.F., Ruckenstein E. Grafting of poly(ethylene oxide) to the surface of polyaniline films through a chlorosulfonation method and the biocompatibility of the modified films. J. Colloid Interface Sci. 2004;269:62–71. doi: 10.1016/S0021-9797(03)00606-4. PubMed DOI

Humpolíček P., Radaszkiewicz K., Kašpárková V., Stejskal J., Trchová M., Kuceková Z., Vičarová H., Pachernik J., Lehocký M., Minarik A. Stem cell differentiation on conducting polyaniline. RSC Adv. 2015;5:68796–68805. doi: 10.1039/C5RA12218J. DOI

Burtis C.A., Ashwood E.R., Bruns D.E. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 4th ed. Elsevier; St. Louis, MO, USA: 2006. p. 2412.

Stejskal J., Sapurina I. Polyaniline: Thin films and colloidal dispersions - (IUPAC technical report) Pure Appl. Chem. 2005;77:815–826. doi: 10.1351/pac200577050815. DOI

Kay C., Schwan H. Specific resistance of body tissues. Circul. Res. 1956;4:664–670. PubMed

Kaushansky K., Lichtman M., Beutler E., Kipps T., Prchal J., Seligsohn U. Williams Hematology. 7th ed. McGraw-Hill Professional; New York, NY, USA: 2006. Principles of antithrombotic therapy.

Lam L.H., Silbert J.E., Rosenberg R.D. Separation of active and inactive forms of heparin. Biochem. Biophys. Res. Commun. 1976;69:570–577. doi: 10.1016/0006-291X(76)90558-1. PubMed DOI

Mosier P., Krishnasamy C., Kellogg G., Desai U. On the specificity of heparin/heparan sulfate binding to proteins. Anion-binding sites on antithrombin and thrombin are fundamentally different. PLoS ONE. 2012;7:e48632. doi: 10.1371/journal.pone.0048632. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Polymer Biointerfaces

. 2020 Apr 02 ; 12 (4) : . [epub] 20200402

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...