In-Vitro Hemocompatibility of Polyaniline Functionalized by Bioactive Molecules
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P2-0082
Slovenian Research Agency
17-05095S
Grantová Agentura České Republiky
PubMed
31718055
PubMed Central
PMC6918175
DOI
10.3390/polym11111861
PII: polym11111861
Knihovny.cz E-zdroje
- Klíčová slova
- conducting polymer, hemocompatibility, polyaniline, polymer conductivity,
- Publikační typ
- časopisecké články MeSH
Hemocompatibility is an essential prerequisite for the application of materials in the field of biomedicine and biosensing. In addition, mixed ionic and electronic conductivity of conducting polymers is an advantageous property for these applications. Heparin-like materials containing sulfate, sulfamic, and carboxylic groups may have an anticoagulation effect. Therefore, sodium dodecylbenzenesulfonate, 2-aminoethane-1-sulfonic acid and N-(2-acetamido)-2-aminoethanesulfonic acid were used for modification of the representative of conducting polymers, polyaniline, and the resulting products were studied in the context of interactions with human blood. The anticoagulation activity was then correlated to surface energy and conductivity of the materials. Results show that anticoagulation activity is highly affected by the presence of suitable functional groups originating from the used heparin-like substances, and by the properties of polyaniline polymer itself.
Centre of Polymer Systems Tomas Bata University in Zlín 760 01 Zlín Czech Republic
Department of Hematology Tomas Bata Regional Hospital in Zlín 762 75 Zlín Czech Republic
Faculty of Humanities Tomas Bata University in Zlín 760 01 Zlín Czech Republic
Faculty of Technology Tomas Bata University in Zlín 760 01 Zlín Czech Republic
Zobrazit více v PubMed
Rivnay J., Inal S., Collins B., Sessolo M., Stavrinidou E., Strakosas X., Tassone C., Delongchamp D., Malliaras G. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 2016;7:11287. doi: 10.1038/ncomms11287. PubMed DOI PMC
Ramanaviciene A., Kausaite-Minkstimiene A., Tautkus S., Ramanavicius A. Biocompatibility of polypyrrole particles: An in-vivo study in mice. J. Pharm. Pharm. 2007;59:311–315. doi: 10.1211/jpp.59.2.0017. PubMed DOI
Vaitkuviene A., Kaseta V., Voronovic J., Ramanauskaite G., Biziuleviciene G., Ramanaviciene A., Ramanavicius A. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization. J. Hazard. Mater. 2013;250:167–174. doi: 10.1016/j.jhazmat.2013.01.038. PubMed DOI
Vaitkuviene A., Ratautaite V., Mikoliunaite L., Kaseta V., Ramanauskaite G., Biziuleviciene G., Ramanaviciene A., Ramanavicius A. Some biocompatibility aspects of conducting polymer polypyrrole evaluated with bone marrow-derived stem cells. Colloid Surf. A. 2014;442:152–156. doi: 10.1016/j.colsurfa.2013.06.030. DOI
Humpolicek P., Kasparkova V., Saha P., Stejskal J. Biocompatibility of polyaniline. Synth. Met. 2012;162:722–727. doi: 10.1016/j.synthmet.2012.02.024. DOI
Stejskal J., Hajná M., Kašpárková V., Humpolíček P., Zhigunov A., Trchová M. Purification of a conducting polymer, polyaniline, for biomedical applications. Synth. Met. 2014;195:286–293. doi: 10.1016/j.synthmet.2014.06.020. DOI
Humpolíček P., Kašpárková V., Pacherník J., Stejskal J., Bober P., Capáková Z., Radaszkiewicz K.A., Junkar I., Lehocký M. The biocompatibility of polyaniline and polypyrrole: A comparative study of their cytotoxicity, embryotoxicity and impurity profile. Mater. Sci. Eng. C. 2018;91:303–310. doi: 10.1016/j.msec.2018.05.037. PubMed DOI
Li Y.L., Neoh K.G., Cen L., Kang E.T. Physicochemical and blood compatibility characterization of polypyrrole surface functionalized with heparin. Biotechnol. Bioeng. 2003;84:305–313. doi: 10.1002/bit.10757. PubMed DOI
Ferraz N., Carlsson D.O., Hong J., Larsson R., Fellstrom B., Nyholm L., Stromme M., Mihranyan A. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. J. R. Soc. Interface. 2012;9:1943–1955. doi: 10.1098/rsif.2012.0019. PubMed DOI PMC
Mao C., Zhu A.P., Wu Q., Chen X.B., Kim J.H., Shen J. New biocompatible polypyrrole-based films with good blood compatibility and high electrical conductivity. Colloid Surf. B. 2008;67:41–45. doi: 10.1016/j.colsurfb.2008.07.012. PubMed DOI
Humpolíček P., Kuceková Z., Kašpárková V., Pelková J., Modic M., Junkar I., Trchová M., Bober P., Stejskal J., Lehocký M. Blood coagulation and platelet adhesion on polyaniline films. Colloid Surf. B. 2015;133:278–285. doi: 10.1016/j.colsurfb.2015.06.008. PubMed DOI
Paneva D., Stoilova O., Manolova N., Danchev D., Lazarov Z., Rashkov I. Copolymers of 2-acryloylamido-2-methylpropanesulfonic acid and acrylic acid with anticoagulant activity. E-Polymers. 2003;3:11. doi: 10.1515/epoly.2003.3.1.665. DOI
Yancheva E., Paneva D., Danchev D., Mespouille L., Dubois P., Manolova N., Rashkov I. Polyelectrolyte complexes based on (quaternized) poly (2-dimethylamino)ethyl methacrylate: Behavior in contact with blood. Macromol. Biosci. 2007;7:940–954. doi: 10.1002/mabi.200700056. PubMed DOI
Šorm M., Nešpůrek S., Mrkvičková L., Kálal J., Vorlová Z. Anticoagulation activity of some sulfate-containing polymers of the methacrylate type. J. Polym. Sci. C. 1979;66:349–356. doi: 10.1002/polc.5070660132. DOI
Stejskal J., Gilbert R.G. Polyaniline. Preparation of a conducting polymer (IUPAC technical report) Pure Appl. Chem. 2002;74:857–867. doi: 10.1351/pac200274050857. DOI
Secomb T.W. Hemodynamics. Compr. Physiol. 2016;6:975–1003. PubMed PMC
Bober P., Humpolíček P., Pacherník J., Stejskal J., Lindfors T. Conducting polyaniline based cell culture substrate for embryonic stem cells and embryoid bodies. RSC Adv. 2015;5:50328–50335. doi: 10.1039/C5RA07504A. DOI
Li Y.M., Zhao R., Li X., Wang C.Y., Bao H.W., Wang S.D., Fang J., Huang J.Q., Wang C. Blood-compatible polyaniline coated electrospun polyurethane fiber scaffolds for enhanced adhesion and proliferation of human umbilical vein endothelial cells. Fiber. Polym. 2019;20:250–260. doi: 10.1007/s12221-019-8735-0. DOI
Zhang F., Kang E.T., Neoh K.G., Wang P., Tan K.L. Reactive coupling of poly(ethylene glycol) on electroactive polyaniline films for reduction in protein adsorption and platelet adhesion. Biomaterials. 2002;23:787–795. doi: 10.1016/S0142-9612(01)00184-3. PubMed DOI
Li Z.F., Ruckenstein E. Grafting of poly(ethylene oxide) to the surface of polyaniline films through a chlorosulfonation method and the biocompatibility of the modified films. J. Colloid Interface Sci. 2004;269:62–71. doi: 10.1016/S0021-9797(03)00606-4. PubMed DOI
Humpolíček P., Radaszkiewicz K., Kašpárková V., Stejskal J., Trchová M., Kuceková Z., Vičarová H., Pachernik J., Lehocký M., Minarik A. Stem cell differentiation on conducting polyaniline. RSC Adv. 2015;5:68796–68805. doi: 10.1039/C5RA12218J. DOI
Burtis C.A., Ashwood E.R., Bruns D.E. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 4th ed. Elsevier; St. Louis, MO, USA: 2006. p. 2412.
Stejskal J., Sapurina I. Polyaniline: Thin films and colloidal dispersions - (IUPAC technical report) Pure Appl. Chem. 2005;77:815–826. doi: 10.1351/pac200577050815. DOI
Kay C., Schwan H. Specific resistance of body tissues. Circul. Res. 1956;4:664–670. PubMed
Kaushansky K., Lichtman M., Beutler E., Kipps T., Prchal J., Seligsohn U. Williams Hematology. 7th ed. McGraw-Hill Professional; New York, NY, USA: 2006. Principles of antithrombotic therapy.
Lam L.H., Silbert J.E., Rosenberg R.D. Separation of active and inactive forms of heparin. Biochem. Biophys. Res. Commun. 1976;69:570–577. doi: 10.1016/0006-291X(76)90558-1. PubMed DOI
Mosier P., Krishnasamy C., Kellogg G., Desai U. On the specificity of heparin/heparan sulfate binding to proteins. Anion-binding sites on antithrombin and thrombin are fundamentally different. PLoS ONE. 2012;7:e48632. doi: 10.1371/journal.pone.0048632. PubMed DOI PMC