Sequential Response of Sage Antioxidant Metabolism to Chilling Treatment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
7AMB16PL001
Ministry of Education, Youth and Sports of the Czech Republic
7AMB16PL001, statutory activity
Ministry of Science and Higher Education of the Republic of Poland
CZ.02.1.01/0.0/0.0/l6_0l7/0002334
Research Infrastructure for Young Scientists, co-financed by the Operational Programme Research, Development and Education, Czech Republic
PubMed
31726737
PubMed Central
PMC6891540
DOI
10.3390/molecules24224087
PII: molecules24224087
Knihovny.cz E-zdroje
- Klíčová slova
- Salvia officinalis L., antioxidants, chilling stress, cultivars, reactive oxygen species,
- MeSH
- antioxidancia metabolismus MeSH
- energetický metabolismus * MeSH
- fyziologie rostlin * MeSH
- nízká teplota * MeSH
- oxidace-redukce MeSH
- reakce na chladový šok genetika MeSH
- reaktivní formy kyslíku metabolismus MeSH
- šalvěj lékařská fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- reaktivní formy kyslíku MeSH
Chilling influences the growth and metabolism of plants. The physiological response and acclimatization of genotypes in relation to stress stimulus can be different. Two sage cultivars: 'Icterina' and 'Purpurascens' were subjected to 4 °C and 18 °C (control), and sampled between the 5th and 14th day of the treatment. Ascorbate peroxidase (APX) activity was up-regulated in chilled 'Purpurascens' on the 14th day, while guaiacol peroxidase (GPX) activity increased on the 10th and 12th day in relation to the control. GPX activity of the control 'Icterina' was frequently higher than chilled plants, and chilling did not affect APX activity of that cultivar. Catalase activity remained stable in both sage cultivars. Chilled 'Purpurascens' showed a significant increase in total phenolics contents on the 5th, 7th, and 12th day and in total antioxidant capacity on the 5th and 10th day as compared to the control for respective sampling days. Higher malondialdehyde content was found in chilled plants on the 12th, or 14th day, differences reached 26-28% of the controls. Chilling caused significant decrease in dry matter content. The stress response was more stable and effective in 'Icterina', while more dynamic changes were found for 'Purpurascens'. Based on our results, we propose to use 'Purpurascens' for targeted stress-induced studies and 'Icterina' for field applications.
Zobrazit více v PubMed
Apel K., Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Suzuki N., Mittler R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 2006;126:45–51. doi: 10.1111/j.0031-9317.2005.00582.x. DOI
Yonny M.E., Torressi A.R., Nazareno M.A., Cerutti S. Development of a novel, sensitive, selective, and fast methodology to determine malondialdehyde in leaves of melon plants by ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Anal. Methods Chem. 2017;2017 doi: 10.1155/2017/4327954. PubMed DOI PMC
Caverzan A., Casassola A., Brammer S.P. Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In: Shanker A., Chanker C., editors. Abiotic and Biotic Stress in Plants—Recent Advances and Future Perspectives. 1st ed. InTechOpen; Rijeka, Croatia: 2016. pp. 463–480.
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/S1360-1385(02)02312-9. PubMed DOI
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012;2012 doi: 10.1155/2012/217037. DOI
Huang M., Guo Z. Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol. Plant. 2005;49:81–84. doi: 10.1007/s00000-005-1084-3. PubMed DOI
Oh M.M., Carey E.E., Rajashekar C.B. Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol. Biochem. 2009;47:578–583. PubMed
Kuk Y.I., Shin J.S., Burgos N.R., Hwang T.E., Han O., Cho B.H., Jung S., Guh J.O. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop. Sci. 2003;43:2109–2117. doi: 10.2135/cropsci2003.2109. DOI
Lee D.H., Lee C.B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: In gel enzyme activity assays. Plant Sci. 2000;159:75–85. doi: 10.1016/S0168-9452(00)00326-5. PubMed DOI
Airaki M., Leterrier M., Mateos R.M., Valderrama R., Chaki M., Barroso J.B., Del Río L.A., Palma J.M., Corpas F.J. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ. 2012;35:281–295. doi: 10.1111/j.1365-3040.2011.02310.x. PubMed DOI
Cheng F., Lu J., Gao M., Shi K., Kong Q., Huang Y., Bie Z. Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon. Front. Plant Sci. 2016;7:1519. doi: 10.3389/fpls.2016.01519. PubMed DOI PMC
Yadegari L.Z., Heidari R., Carapetian J. Cold pretreatment-induced changes in antioxidant enzyme activities and relative water content and soluble sugars in shoots and roots of soybean seedlings. J. Biol. Sci. 2007;7:1525–1530.
Kalisz A., Pokluda R., Jezdinský A., Sękara A., Grabowska A., Gil J., Neugebauerová J. Chilling-induced changes in the antioxidant status of basil plants. Acta Physiol. Plant. 2016;38:196. doi: 10.1007/s11738-016-2214-7. DOI
Soengas P., Rodríguez V.M., Velasco P., Cartea M.E. Effect of temperature stress on antioxidant defenses in Brassica oleracea. ACS Omega. 2018;3:5237–5243. doi: 10.1021/acsomega.8b00242. PubMed DOI PMC
Sivaci A., Kaya A., Duman S. Effects of ascorbic acid on some physiological changes of pepino (Solanum muricatum Ait.) under chilling stress. Acta Biol. Hungarica. 2014;65:305–318. doi: 10.1556/ABiol.65.2014.3.7. PubMed DOI
Proietti S., Moscatello S., Famiani F., Battistelli A. Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature. Plant Physiol. Biochem. 2009;47:717–723. doi: 10.1016/j.plaphy.2009.03.010. PubMed DOI
Janda T., Kósa E., Pintér J., Szalai G., Marton C., Páldi E. Antioxidant activity and chilling tolerance of young maize inbred lines and their hybrids. Cereal Res. Commun. 2005;33:541–548. doi: 10.1556/CRC.33.2005.2-3.117. DOI
Xu S.C., Li Y.P., Hu J., Guan Y.J., Ma W.G., Zheng Y.Y., Zhu S.J. Responses of antioxidant enzymes to chilling stress in tobacco seedlings. Agric. Sci. China. 2010;9:1594–1601. doi: 10.1016/S1671-2927(09)60256-X. DOI
Xu P.L., Guo Y.K., Bai J.G., Shang L., Wang X.J. Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol. Plant. 2008;132:467–478. doi: 10.1111/j.1399-3054.2007.01036.x. PubMed DOI
Borowski E. Response to chilling in cucumber (Cucumis sativus L.) plants treated with triacontanol and Asahi SL. Acta Agrobot. 2009;62:165–172. doi: 10.5586/aa.2009.038. DOI
Bloom A.J., Zwieniecki M.A., Passioura J.B., Randall L.B., Holbrook N.M., Clair D.A. Water relations under root chilling in a sensitive and tolerant tomato species. Plant Cell Environ. 2004;27:971–979. doi: 10.1111/j.1365-3040.2004.01200.x. DOI
Lukatkin A.S., Brazaitytė A., Bobinas Č., Duchovskis P. Chilling injury in chilling-sensitive plants: A review. Agriculture. 2012;99:111–124.
Rodríguez V.M., Soengas P., Alonso-Villaverde V., Sotelo T., Cartea M.E., Velasco P. Effect of temperature stress on the early vegetative development of Brassica oleracea L. BMC Plant Biol. 2015;15:145. doi: 10.1186/s12870-015-0535-0. PubMed DOI PMC
Kalisz A., Sękara A., Pokluda R., Jezdinský A., Neugebauerová J., Grabowska A., Jurkow R., Slezák K.A. Physio-biochemical responses of sage genotypes to chilling. Hort. Sci. 2019 under review.
Habán M., Habánová M., Holovičová M., Ražná K. Rosmarinic acid content in selected varieties of sage (Salvia officinalis L.) J. Cent. Eur. Agric. 2019;20:305–320. doi: 10.5513/JCEA01/20.1.2144. DOI
Rivero R.M., Ruiz J.M., García P.C., López-Lefebre L.R., Sánchez E., Romero R. Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001;160:315–321. doi: 10.1016/S0168-9452(00)00395-2. PubMed DOI
Kang H.M., Saltveit M.E. Reduced chilling tolerance in elongating cucumber seedling radicles is related to their reduced antioxidant enzyme and DPPH-radical scavenging activity. Physiol. Plant. 2002;115:244–250. doi: 10.1034/j.1399-3054.2002.1150210.x. PubMed DOI
Pop A.V., Tofană M., Socaci S.A., Pop C., Rotar A.M., Nagy M., Salanță L. Determination of antioxidant capacity and antimicrobial activity of selected Salvia species. Bull. UASVM Food Sci. Technol. 2016;73:14–18.
Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014;2:53. doi: 10.3389/fenvs.2014.00053. DOI
Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y., Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 2002;53:1305–1319. doi: 10.1093/jexbot/53.372.1305. PubMed DOI
Guo Z., Ou W., Lu S., Zhong Q. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol. Biochem. 2006;4:828–836. doi: 10.1016/j.plaphy.2006.10.024. PubMed DOI
Caverzan A., Passaia G., Rosa S.B., Ribeiro C.W., Lazzarotto F., Margis-Pinheiro M. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 2012;35:1011–1019. doi: 10.1590/S1415-47572012000600016. PubMed DOI PMC
Pandey S., Fartyal D., Agarwal A., Shukla T., James D., Kaul T., Negi Y.K., Arora S., Reddy M.K. Abiotic stress tolerance in plants: Myriad roles of ascorbate peroxidase. Front. Plant Sci. 2017;8:581. doi: 10.3389/fpls.2017.00581. PubMed DOI PMC
Duan M., Feng H.L., Wang L.Y., Li D., Meng Q.W. Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. J. Plant Physiol. 2012;169:867–877. doi: 10.1016/j.jplph.2012.02.012. PubMed DOI
Guo W.L., Chen R.G., Gong Z.H., Yin Y.X., Ahmed S.S., He Y.N. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genet. Mol. Res. 2012;11:4063–4080. doi: 10.4238/2012.September.10.5. PubMed DOI
Dhindsa R.S., Matowe W. Drought tolerance in two mosses: Correlated with enzymatic defense against lipid peroxidation. J. Exp. Bot. 1981;32:79–91. doi: 10.1093/jxb/32.1.79. DOI
Djeridane A., Yousfi M., Nadjemi B., Boutassouna D., Stocker P., Vidal N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compound. Food Chem. 2006;97:654–660. doi: 10.1016/j.foodchem.2005.04.028. DOI
Bartosz G. Druga Twarz Tlenu. Wolne Rodniki W Przyrodzie [Free Radicals in Nature] 2nd ed. PWN; Warszawa, Poland: 2009.
Aebi H. Catalase in vitro. Method Enzymol. 1984;105:121–126. PubMed
Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880.
Zhang Z., Pang X., Duan X., Ji Z.L., Jiang Y. Role of peroxidase in anthocyanine degradation in litchi fruit pericarp. Food Chem. 2005;90:47–52. doi: 10.1016/j.foodchem.2004.03.023. DOI