Potential Ecological Risk and Human Health Risk Assessment of Heavy Metal Pollution in Industrial Affected Soils by Coal Mining and Metallurgy in Ostrava, Czech Republic

. 2019 Nov 14 ; 16 (22) : . [epub] 20191114

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31739633

The heavy metal pollution of soils has become serious environmental problem, mainly in localities with high industrialization and rapid growth. The purpose of this detailed research was to determine the actual status of heavy metal pollution of soils and an assessment of heavy metal pollution in a highly industrialized city, Ostrava, with a history of long-term impacts from the metallurgy industry and mining. The ecological risks to the area was subsequently also assessed. The heavy metals Cd, Hg, Cu, Mn, Pb, V, Zn, Cr and Fe were determined in top-soils (0-20 cm) using atomic absorption spectrometry (F AAS, GF AAS) from three areas with different anthropogenic loads. The obtained data expressed as mean metal concentrations were very varied among the sampled soils and values of all analyzed metal concentrations were higher than its background levels. To identify the ecological risk and assessment of soil pollution, various pollution indices were calculated, such as single pollution indices (Igeo, CF, EF, PI) and total complex indices (IPI, PLI, PINemerow, Cdeg, mCdeg, Er and PERI). The identification of pollution sources was assessed using Pearson's correlation analysis and multivariate methods (HCA, PCA/FA). The obtained results confirmed three major groups of metals (Fe-Cr, Pb-Cu and Mn-V). A human health risk was identified in the case of Pb, Cd and Cr, and the HI value of V for children also exceeded 1.

Zobrazit více v PubMed

Wang J.Z., Peng S.C., Chen T.H., Zhang L. Occurrence, source identification and ecological risk evaluation of metal elements in surface sediment: Toward a comprehensive understanding of heavy metal pollution in Chaohu Lake, Eastern China. Environ. Sci. Pollut. Res. 2016;23:307–314. doi: 10.1007/s11356-015-5246-4. PubMed DOI

Gabarrón M., Faz A., Martínez-Martínez S., Zornoza R., Acosta J.A. Assessment of metals behaviour in industrial soil using sequential extraction, multivariable analysis and a geostatistical approach. J. Geochem. Explor. 2017;172:174–183. doi: 10.1016/j.gexplo.2016.10.015. DOI

Peña-Icart M., Pereira-Filho E.R., Fialho L.L., Nóbrega J.A., Alonso-Hernández C., Bolaños-Alvarez Y., Mario S. Combining contamination indexes, sediment quality guidelines and multivariate data analysis for metal pollution assessment in marine sediments of Cienfuegos Bay, Cuba. Chemosphere. 2017;168:1267–1276. doi: 10.1016/j.chemosphere.2016.10.053. PubMed DOI

Qian Y., Gallagher F., Deng Y., Wu M., Feng H. Risk assessment and interpretation of heavy metal contaminated soils on an urban brownfield site in New York metropolitan area. Environ. Sci. Pollut. Res. 2017;24:23549–23558. doi: 10.1007/s11356-017-9918-0. PubMed DOI

Xia X., Yang Z., Li G., Yu T., Mutelo A.M. Practicability of monitoring soil Cd, Hg, and Pb pollution based on a geochemical survey in China. Chemosphere. 2017;172:217–224. doi: 10.1016/j.chemosphere.2016.12.082. PubMed DOI

Wu W., Wu P., Yang F., Sun D.-L., Zhang D.-X., Zhou Y.-K. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci. Total Environ. 2018;630:53–61. doi: 10.1016/j.scitotenv.2018.02.183. PubMed DOI

Bosch A.C., O’Neill B., Sigge G.O., Kerwath S.E., Hoffman L.C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 2016;96:32–48. doi: 10.1002/jsfa.7360. PubMed DOI

Lamas G.A., Navas-Acien A., Mark D.B., Lee K.L. Heavy Metals, Cardiovascular Disease, and the Unexpected Benefits of Chelation Therapy. J. Am. Coll. Cardiol. 2016;67:2411–2418. doi: 10.1016/j.jacc.2016.02.066. PubMed DOI PMC

Ma Y., Egodawatta P., McGree J., Liu A., Goonetilleke A. Human health risk assessment of heavy metals in urban stormwater. Sci. Total Environ. 2016;557:764–772. doi: 10.1016/j.scitotenv.2016.03.067. PubMed DOI

Hou D., O’Connor D., Nathanail P., Tian L., Ma Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017;231:1188–1200. doi: 10.1016/j.envpol.2017.07.021. PubMed DOI

Ke X., Gui S., Huang H., Zhang H., Wang C., Guo W. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere. 2017;175:473–481. doi: 10.1016/j.chemosphere.2017.02.029. PubMed DOI

Zinkutė R., Taraškevičius R., Jankauskaitė M., Stankevičius Ž. Methodological alternatives for calculation of enrichment factors used for assessment of topsoil contamination. J. Soils Sediments. 2017;17:440–452. doi: 10.1007/s11368-016-1549-4. DOI

Streets D.G., Lu Z., Levin L., ter Schure A.F.H., Sunderland E.M. Historical releases of mercury to air, land, and water from coal combustion. Sci. Total Environ. 2018;615:131–140. doi: 10.1016/j.scitotenv.2017.09.207. PubMed DOI

Abraham J., Dowling K., Florentine S. Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia. Chemosphere. 2018;192:122–132. doi: 10.1016/j.chemosphere.2017.10.150. PubMed DOI

Shu X.H., Zhang Q., Lu G.N., Yi X.Y., Dang Z. Pollution characteristics and assessment of sulfide tailings from the Dabaoshan Mine, China. Int. Biodeterior. Biodegrad. 2018;128:122–128. doi: 10.1016/j.ibiod.2017.01.012. DOI

Zhou J., Liang J., Hu Y., Zhang W., Liu H., You L., Zhang W., Gao M., Zhou J. Exposure risk of local residents to copper near the largest flash copper smelter in China. Sci. Total Environ. 2018:453–461. doi: 10.1016/j.scitotenv.2018.02.211. PubMed DOI

Ma Y., Jia Z., Li S. Risk assessment of heavy metals in soil of Tongnan District (Southwest China): Evidence from multiple indices with high-spatial-resolution sampling. Environ. Sci. Pollut. Res. 2017;24:20282–20290. doi: 10.1007/s11356-017-9707-9. PubMed DOI

Čujič M., Dragovič S., Dorđevič M., Dragović R., Gajić B. Environmental assessment of heavy metals around the largest coal fired power plant in Serbia. CATENA. 2016;139:44–52. doi: 10.1016/j.catena.2015.12.001. DOI

ISO . ISO 10381-5:2005 Soil Quality—Sampling—Part 5: Guidance on the Procedure for the Investigation of Urban and Industrial Sites with Regard to Soil Contamination. International Standards Organization; Geneve, Switzerland: 2005.

ISO . ISO 10390:2005 Soil Quality, Determination of PH. International Standards Organization; Geneve, Switzerland: 2005.

ISO . ISO 11465:1993 Soil Quality—Determination of Dry Matter and Water Content on a Mass Basis—Gravimetric Method. International Standards Organization; Geneve, Switzerland: Beuth; Berlin, Germany: 1993.

Reimann C., Fabian K., Flem B., Schilling J., Roberts D., Englmaier P. Pb concentrations and isotope ratios of soil O and C horizons in Nord-Trøndelag, central Norway: Anthropogenic or natural sources? Appl. Geochem. 2016;74:55–66. doi: 10.1016/j.apgeochem.2016.09.002. DOI

MAP 2019. [(accessed on 12 January 2019)]; Available online: http://mapy2.ostrava.cz/agenda-zp/

Doležalová Weissmannová H., Pavlovský J. Indices of soil contamination by heavy metals – methodology of calculation for pollution assessment (minireview) Environ. Monit. Assess. 2017;189:1–25. doi: 10.1007/s10661-017-6340-5. PubMed DOI

Marrugo-Negrete J., Pinedo-Hernández J., Díez S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017;154:380–388. doi: 10.1016/j.envres.2017.01.021. PubMed DOI

Zhang P., Qin C., Hong X., Kang G., Qin M., Yang D., Pang B., Li Y., He J., Dick R.P. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Sci. Total Environ. 2018;633:1136–1147. doi: 10.1016/j.scitotenv.2018.03.228. PubMed DOI

Hakanson L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980;14:975–1001. doi: 10.1016/0043-1354(80)90143-8. DOI

Varol M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011;195:355–364. doi: 10.1016/j.jhazmat.2011.08.051. PubMed DOI

Li F., Huang J., Zeng G., Yuan X., Li X., Liang J., Wang X., Tang X., Bai B. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J. Geochem. Explor. 2013;132:75–83. doi: 10.1016/j.gexplo.2013.05.007. DOI

Shen F., Liao R., Ali A., Mahar A., Guo D., Li R., Xining S., Awasthi M.K., Wang Q., Zhang Z. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol. Environ. Saf. 2017;139:254–262. doi: 10.1016/j.ecoenv.2017.01.044. PubMed DOI

Adamu C.I., Nganje T.N. Heavy metal contamination of surface soil in relationship to land use patterns: A case study of Benue State, Nigeria. Mater. Sci. Appl. 2010;1:127–134. doi: 10.4236/msa.2010.13021. DOI

Kumar K.R., Anbazhagan V. Analysis and assessment of heavy metals in soils around the industrial areas in Mettur, Tamilnadu, India. Env. Monit. Assess. 2018;190:519. doi: 10.1007/s10661-018-6899-5. PubMed DOI

Sanjeevani U.K.P.S., Indraratne S.P., Weerasooriya R., Vitharana U.W.A., Kumaragamage D. Identifying the Sources and Contamination Status of Potentially Toxic Trace Elements in Agricultural Soils. Commun. Soil Sci. Plant. Anal. 2017;48:865–877. doi: 10.1080/00103624.2017.1299168. DOI

Müller G. The heavy metal pollution of the sediments of Neckars and its tributary: A stocktaking. Chem. Ztg. 1981;105:157–164.

Rudnick R.L., Gao S. Composition of the continental crust. Treatise Geochem. 2003;3:659.

Yaroshevsky A.A. Abundances of chemical elements in the Earth’s crust. Geochem. Int. 2006;44:48. doi: 10.1134/S001670290601006X. DOI

Kabata-Pendias A. Trace Elements in Soils and Plants. CRC Press; Boca Raton, FL, USA: 2010. pp. 1–548.

Rahman M.S., Saha N., Molla A.H. Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone, Bangladesh. Environ. Earth Sci. 2014;71:2293–2308. doi: 10.1007/s12665-013-2631-5. DOI

Inengite A.K., Abasi C., Walter C. Application of pollution indices for the assessment of heavy metal pollution in flood impacted soil. Int. Res. J. Pure Appl. Chem. 2015;8:175–189. doi: 10.9734/IRJPAC/2015/17859. DOI

Liang A., Wang Y., Guo H., Bo L., Zhang S., Bai Y. Assessment of pollution and identification of sources of heavy metals in the sediments of Changshou Lake in a branch of the Three Gorges Reservoir. Environ. Sci. Pollut. Res. 2015;22:16067–16076. doi: 10.1007/s11356-015-4825-8. PubMed DOI

Briki M., Zhu Y., Gao Y., Shao M., Ding H., Ji H. Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang, China. Environ. Monit. Assess. 2017;189:458. doi: 10.1007/s10661-017-6153-6. PubMed DOI

Igwe O., Una C.O., Abu E., Adepehin E.J. Environmental risk assessment of lead–zinc mining: A case study of Adudu metallogenic province, middle Benue Trough, Nigeria. Environ. Monit. Assess. 2017;189:492. doi: 10.1007/s10661-017-6191-0. PubMed DOI

USEPA . Volume I: Human Health Evaluation Manual (HHEM)—Part A, Baseline Risk Assessment. Office of Emergency and Remedial Response; Washington, DC, USA: 1989. Risk Assessment Guidance for Superfund (RAGS)

USEPA (United States Environmental Protection Agency) Exposure Factors Handbook. Office of Research and Development; National Center for Environmental Assessment; Washington, DC, USA: 1997.

USEPA (United States Environmental Protection Agency) Risk Assessment Guidance for Superfund: Volume III—Part A, Process for Conducting Probabilistic Risk Assessment. U.S. Environmental Protection Agency; Washington, DC, USA: 2001.

Fryer M., Collins C.D., Ferrier H., Colvile R.N., Nieuwenhuijsen M.J. Human exposure modelling for chemical risk assessment:a review of current approaches and research and policy implications. Environ. Sci. Policy. 2006;9:261–274. doi: 10.1016/j.envsci.2005.11.011. DOI

Hu W.Y., Huang B., He Y., Yusef K.K. Assessment of potential health risk of heavy metals in soils from a rapidly developing region of China. Hum. Ecol. Risk Assess. 2016;22:211–225. doi: 10.1080/10807039.2015.1057102. DOI

Hu B.F., Wang J.Y., Jin B., Li Y., Shi Z. Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze River Delta. Environ. Sci. Pollut. Res. Int. 2017;24:19816–19826. doi: 10.1007/s11356-017-9516-1. PubMed DOI

US Environmental Protection Agency (USEPA) Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, OSWER 9355. Office of Emergency and Remedial Response; Washington, DC, USA: 2002.

Luo X.S., Ding J., Xu B., Wang Y.J., Li H.B., Yu S. Incorporating bioaccessibility into human risk assessments of heavy metals in urban park soils. Sci. Total. Environ. 2012;424:88–96. doi: 10.1016/j.scitotenv.2012.02.053. PubMed DOI

US Environmental Protection Agency (USEPA) Exposure Factors Handbook. National Center for Environmental Assessment; Washington, DC, USA: 2011.

US Environmental Protection Agency (USEPA) Integrated Risk Information System of the US Environmental Protection Agency. US Environmental Protection Agency (USEPA); Washington, DC, USA: 2012.

Diami S.M., Kusin F.M., Madzin Z. Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, Malaysia. Environ. Sci. Pollut. Res. Int. 2016;23:21086–21097. doi: 10.1007/s11356-016-7314-9. PubMed DOI

Liu X., Song Q., Tang Y., Li W., Xu J., Wu J., Wang F., Brookes P.C. Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Sci. Tot. Environ. 2013;463:530–540. doi: 10.1016/j.scitotenv.2013.06.064. PubMed DOI

Wang G., Zhang S., Xiao L., Zhong Q., Li L., Xu G., Deng O., Pu Y. Heavy metals in soils from a typical industrial area in Sichuan, China: Spatial distribution, source identification, and ecological risk assessment. Environ. Sci. Pollut. Res. 2017;24:16618–16630. doi: 10.1007/s11356-017-9288-7. PubMed DOI

Tepanosyan G., Maghakyan N., Sahakyan L., Saghatelyan A. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicol. Environ. Saf. 2017;142:257–265. doi: 10.1016/j.ecoenv.2017.04.013. PubMed DOI

Guan Q., Wang F., Xu C., Pan N., Lin J., Zhao R., Yang Y., Luo H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere. 2018;193:189–197. doi: 10.1016/j.chemosphere.2017.10.151. PubMed DOI

Rapant S., Fajčíková K., Khun M., Cvečková V. Application of health risk assessment method for geological environment at national and regional scales. Environ. Earth Sci. 2010;64:513–521. doi: 10.1007/s12665-010-0875-x. DOI

Li F., Huang J., Zeng G., Huang X., Liu W., Wu H., Yuan Y., He X., Lai M. Spatial distribution and health risk assessment of toxic metals associated with receptor population density in street dust: A case study of Xiandao District, Changsha, Middle China. Environ. Sci. Pollut. Res. Int. 2015;22:6732–6742. doi: 10.1007/s11356-014-3753-3. PubMed DOI

Faiz Y., Siddique N., Tufail M. Pollution level and health risk assessment of road dust from an expressway. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2012;47:818–829. doi: 10.1080/10934529.2012.664994. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Associations between migraine and possible risk factors in the Czech Republic

. 2023 ; 14 () : 1256650. [epub] 20230926

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...