Prognostic Value of MicroRNAs in Patients after Myocardial Infarction: A Substudy of PRAGUE-18
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu klinické zkoušky, fáze IV, časopisecké články, multicentrická studie, randomizované kontrolované studie
PubMed
31781298
PubMed Central
PMC6875251
DOI
10.1155/2019/2925019
Knihovny.cz E-zdroje
- MeSH
- biologické markery analýza MeSH
- dospělí MeSH
- infarkt myokardu farmakoterapie genetika mortalita MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- míra přežití MeSH
- následné studie MeSH
- prognóza MeSH
- regulace genové exprese u nádorů * MeSH
- retrospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze IV MeSH
- multicentrická studie MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- biologické markery MeSH
- mikro RNA MeSH
- MIRN1 microRNA, human MeSH Prohlížeč
- MIRN133 microRNA, human MeSH Prohlížeč
- MIRN499 microRNA, human MeSH Prohlížeč
BACKGROUND: The evaluation of the long-term risk of major adverse cardiovascular events and cardiac death in patients after acute myocardial infarction (AMI) is an established clinical process. Laboratory markers may significantly help with the risk stratification of these patients. Our objective was to find the relation of selected microRNAs to the standard markers of AMI and determine if these microRNAs can be used to identify patients at increased risk. METHODS: Selected microRNAs (miR-1, miR-133a, and miR-499) were measured in a cohort of 122 patients from the PRAGUE-18 study (ticagrelor vs. prasugrel in AMI treated with primary percutaneous coronary intervention (pPCI)). The cohort was split into two subgroups: 116 patients who did not die (survivors) and 6 patients who died (nonsurvivors) during the 365-day period after AMI. Plasma levels of selected circulating miRNAs were then assessed in combination with high-sensitivity cardiac troponin T (hsTnT) and N-terminal probrain natriuretic peptide (NT-proBNP). RESULTS: miR-1, miR-133a, and miR-499 correlated positively with NT-proBNP and hsTnT 24 hours after admission and negatively with left ventricular ejection fraction (LVEF). Both miR-1 and miR-133a positively correlated with hsTnT at admission. Median relative levels of all selected miRNAs were higher in the subgroup of nonsurvivors (N = 6) in comparison with survivors (N = 116), but the difference did not reach statistical significance. All patients in the nonsurvivor subgroup had miR-499 and NT-proBNP levels above the cut-off values (891.5 ng/L for NT-proBNP and 0.088 for miR-499), whereas in the survivor subgroup, only 28.4% of patients were above the cut-off values (p = 0.001). CONCLUSIONS: Statistically significant correlation was found between miR-1, miR-133a, and miR-499 and hsTnT, NT-proBNP, and LVEF. In addition, this analysis suggests that plasma levels of circulating miR-499 could contribute to the identification of patients at increased risk of death during the first year after AMI, especially when combined with NT-proBNP levels.
Zobrazit více v PubMed
Ibanez B., James S., Agewall S., et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. European Heart Journal. 2017;39(2):119–177. doi: 10.1093/eurheartj/ehx393. PubMed DOI
Waks J. W., Buxton A. E. Risk stratification for sudden cardiac death after myocardial infarction. Annual Review of Medicine. 2018;69(1):147–164. doi: 10.1146/annurev-med-041316-090046. PubMed DOI
Ndrepepa G., Kufner S., Hoyos M., et al. High sensitivity cardiac troponin T and prognosis in patients with ST-segment elevation myocardial infarction. Journal of Cardiology. 2018;72(3):220–226. doi: 10.1016/j.jjcc.2018.02.014. PubMed DOI
Gupta S., Pressman G. S., Figueredo V. M. Incidence of, predictors for, and mortality associated with malignant ventricular arrhythmias in non-ST elevation myocardial infarction patients. Coronary Artery Disease. 2010;21(8):460–465. doi: 10.1097/MCA.0b013e32834022fa. PubMed DOI
Tapanainen J. M., Lindgren K. S., Mäkikallio T. H., Vuolteenaho O., Leppäluoto J., Huikuri H. V. Natriuretic peptides as predictors of non-sudden and sudden cardiac death after acute myocardial infarction in the beta-blocking era. Journal of the American College of Cardiology. 2004;43(5):757–763. doi: 10.1016/j.jacc.2003.09.048. PubMed DOI
Grabowski M., Filipiak K. J., Malek L. A., et al. Admission B-type natriuretic peptide assessment improves early risk stratification by Killip classes and TIMI risk score in patients with acute ST elevation myocardial infarction treated with primary angioplasty. International Journal of Cardiology. 2007;115(3):386–390. doi: 10.1016/j.ijcard.2006.04.038. PubMed DOI
Huikuri H. V., Tapanainen J. M., Lindgren K., et al. Prediction of sudden cardiac death after myocardial infarction in the beta-blocking era. Journal of the American College of Cardiology. 2003;42(4):652–658. doi: 10.1016/S0735-1097(03)00783-6. PubMed DOI
Savic L., Mrdovic I., Perunicic J., et al. Impact of the combined left ventricular systolic and renal dysfunction on one-year outcomes after primary percutaneous coronary intervention. Journal of Interventional Cardiology. 2012;25(2):132–139. doi: 10.1111/j.1540-8183.2011.00698.x. PubMed DOI
Sun T., Dong Y. H., Du W., et al. The role of microRNAs in myocardial infarction: from molecular mechanism to clinical application. International Journal of Molecular Sciences. 2017;18(4):p. 745. doi: 10.3390/ijms18040745. PubMed DOI PMC
Welten S. M. J., Goossens E. A. C., Quax P. H. A., Nossent A. Y. The multifactorial nature of microRNAs in vascular remodelling. Cardiovascular Research. 2016;110(1):6–22. doi: 10.1093/cvr/cvw039. PubMed DOI
Schulte C., Karakas M., Zeller T. MicroRNAs in cardiovascular disease - clinical application. Clinical Chemistry and Laboratory Medicine. 2017;55(5):687–704. doi: 10.1515/cclm-2016-0576. PubMed DOI
Cavarretta E., Frati G. MicroRNAs in coronary heart disease: ready to enter the clinical arena? BioMed Research International. 2016;2016:10. doi: 10.1155/2016/2150763.2150763 PubMed DOI PMC
McCarthy J. J. The myomiR network in skeletal muscle plasticity. Exercise and Sport Sciences Reviews. 2011;39(3):150–154. doi: 10.1097/JES.0b013e31821c01e1. PubMed DOI PMC
D’Alessandra Y., Devanna P., Limana F., et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European Heart Journal. 2010;31(22):2765–2773. doi: 10.1093/eurheartj/ehq167. PubMed DOI PMC
Corsten M. F., Dennert R., Jochems S., et al. Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circulation. Cardiovascular Genetics. 2010;3(6):499–506. doi: 10.1161/CIRCGENETICS.110.957415. PubMed DOI
Motovska Z., Hlinomaz O., Kala P., et al. 1-year outcomes of patients undergoing primary angioplasty for myocardial infarction treated with prasugrel versus ticagrelor. Journal of the American College of Cardiology. 2018;71(4):371–381. doi: 10.1016/j.jacc.2017.11.008. PubMed DOI
Motovska Z., Hlinomaz O., Miklik R., et al. Prasugrel versus ticagrelor in patients with acute myocardial infarction treated with primary percutaneous coronary intervention: multicenter randomized PRAGUE-18 study. Circulation. 2016;134(21):1603–1612. doi: 10.1161/CIRCULATIONAHA.116.024823. PubMed DOI
Devaux Y., Vausort M., Goretti E., et al. Use of circulating microRNAs to diagnose acute myocardial infarction. Clinical Chemistry. 2012;58(3):559–567. doi: 10.1373/clinchem.2011.173823. PubMed DOI
Chen X., Zhang L., Su T., et al. Kinetics of plasma microRNA-499 expression in acute myocardial infarction. Journal of Thoracic Disease. 2015;7(5):890–896. doi: 10.3978/j.issn.2072-1439.2014.11.32. PubMed DOI PMC
Białek S., Górko D., Zajkowska A., et al. Release kinetics of circulating miRNA-208a in the early phase of myocardial infarction. Kardiologia Polska. 2015;73(8):613–619. doi: 10.5603/KP.a2015.0067. PubMed DOI
Gidlöf O., Smith J. G., Miyazu K., et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovascular Disorders. 2013;13(1):p. 12. doi: 10.1186/1471-2261-13-12. PubMed DOI PMC
Wang F., Long G., C Z., et al. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. Journal of Translational Medicine. 2013;11(1):p. 222. doi: 10.1186/1479-5876-11-222. PubMed DOI PMC
Ezekowitz J. A., Théroux P., Chang W., et al. N-terminal pro-brain natriuretic peptide and the timing, extent and mortality in ST elevation myocardial infarction. The Canadian Journal of Cardiology. 2006;22(5):393–397. doi: 10.1016/S0828-282X(06)70924-2. PubMed DOI PMC
Zhang L., Chen X., Su T., et al. Circulating miR-499 are novel and sensitive biomarker of acute myocardial infarction. Journal of Thoracic Disease. 2015;7(3):303–308. doi: 10.3978/j.issn.2072-1439.2015.02.05. PubMed DOI PMC
Widera C., Gupta S. K., Lorenzen J. M., et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. Journal of Molecular and Cellular Cardiology. 2011;51(5):872–875. doi: 10.1016/j.yjmcc.2011.07.011. PubMed DOI
Eitel I., Adams V., Dieterich P., et al. Relation of circulating microRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. American Heart Journal. 2012;164(5):706–714. doi: 10.1016/j.ahj.2012.08.004. PubMed DOI