• This record comes from PubMed

Zn-Mg Biodegradable Composite: Novel Material with Tailored Mechanical and Corrosion Properties

. 2019 Nov 27 ; 12 (23) : . [epub] 20191127

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
18-06110S Grantová Agentura České Republiky
21-SVV/2019 Ministerstvo Školství, Mládeže a Tělovýchovy

Zinc-based alloys represent one of the most highly developed areas regarding biodegradable materials. Despite this, some general deficiencies such as cytotoxicity and poor mechanical properties (especially elongation), are not properly solved. In this work, a Zn-5Mg (5 wt.% Mg) composite material with tailored mechanical and superior corrosion properties is prepared by powder metallurgy techniques. Pure Zn and Mg are mixed and subsequently compacted by extrusion at 200 °C and an extrusion ratio of 10. The final product possesses appropriate mechanical properties (tensile yield strength = 148 MPa, ultimate tensile strength = 183 MPa, and elongation = 16%) and decreased by four times the release of Zn in the initial stage of degradation compared to pure Zn, which can highly decrease cytotoxicity effects and therefore positively affect the initial stage of the healing process.

See more in PubMed

Vimalanandan A., Bashir A., Rohwerder M. Zn-Mg and Zn-Mg-Al alloys for improved corrosion protection of steel: Some new aspects. Mater. Corros. 2014;65:392–400. doi: 10.1002/maco.201307586. DOI

Hausbrand R., Stratmann M., Rohwerder M. Corrosion of zinc–magnesium coatings: Mechanism of paint delamination. Corros. Sci. 2009;51:2107–2114. doi: 10.1016/j.corsci.2009.05.042. DOI

Prosek T., Nazarov A., Bexell U., Thierry D., Serak J. Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions. Corros. Sci. 2008;50:2216–2231. doi: 10.1016/j.corsci.2008.06.008. DOI

Jin H., Zhao S., Guillory R., Bowen P.K., Yin Z., Griebel A., Schaffer J., Earley E.J., Goldman J., Drelich J.W. Novel high-strength, low-alloys Zn-Mg (<0.1 wt% Mg) and their arterial biodegradation. Mater. Sci. Eng. C. 2018;84:67–79. doi: 10.1016/j.msec.2017.11.021. PubMed DOI PMC

Bowen P.K., Guillory R.J., Shearier E.R., Seitz J.-M., Drelich J., Bocks M., Zhao F., Goldman J. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Mater. Sci. Eng. C. 2015;56:467–472. doi: 10.1016/j.msec.2015.07.022. PubMed DOI PMC

Yang H., Wang C., Liu C., Chen H., Wu Y., Han J., Jia Z., Lin W., Zhang D., Li W., et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials. 2017;145:92–105. doi: 10.1016/j.biomaterials.2017.08.022. PubMed DOI

Zheng Y.F., Gu X.N., Witte F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001. DOI

Vojtech D., Kubasek J., Serak J., Novak P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI

Su Y.C., Cockerill I., Wang Y.D., Qin Y.X., Chang L.Q., Zheng Y.F., Zhu D.H. Zinc-Based Biomaterials for Regeneration and Therapy. Trends Biotechnol. 2019;37:428–441. doi: 10.1016/j.tibtech.2018.10.009. PubMed DOI PMC

Venezuela J., Dargusch M.S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019;87:1–40. doi: 10.1016/j.actbio.2019.01.035. PubMed DOI

Li H.F., Xie X.H., Zheng Y.F., Cong Y., Zhou F.Y., Qiu K.J., Wang X., Chen S.H., Huang L., Tian L., et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 2015;5:10719. doi: 10.1038/srep10719. PubMed DOI PMC

Kubasek J., Vojtech D., Jablonska E., Pospisilova I., Lipov J., Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. Mater. Sci. Eng. C. 2016;58:24–35. doi: 10.1016/j.msec.2015.08.015. PubMed DOI

Mostaed E., Sikora-Jasinska M., Drelich J.W., Vedani M. Zinc-based alloys for degradable vascular scent applications. Acta Biomater. 2018;71:1–23. doi: 10.1016/j.actbio.2018.03.005. PubMed DOI PMC

Levy G.K., Goldman J., Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants-A Review Paper. Metals. 2017;7:18. doi: 10.3390/met7100402. DOI

Haase H., Hebel S., Engelhardt G., Rink L. The biochemical effects of extracellular Zn(2+) and other metal ions are severely affected by their speciation in cell culture media. Metallomics. 2015;7:102–111. doi: 10.1039/C4MT00206G. PubMed DOI

Gu X.-N., Zheng Y.-F. A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China. 2010;4:111–115. doi: 10.1007/s11706-010-0024-1. DOI

Zhu D., Su Y., Young M.L., Ma J., Zheng Y., Tang L. Biological Responses and Mechanisms of Human Bone Marrow Mesenchymal Stem Cells to Zn and Mg Biomaterials. ACS Appl. Mater. Interfaces. 2017;9:27453–27461. doi: 10.1021/acsami.7b06654. PubMed DOI

Jablonska E., Vojtech D., Fousova M., Kubasek J., Lipov J., Fojt J., Ruml T. Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy. Mater. Sci. Eng. C. 2016;68:198–204. doi: 10.1016/j.msec.2016.05.114. PubMed DOI

Krystýnová M., Doležal P., Fintová S., Březina M., Zapletal J., Wasserbauer J. Preparation and Characterization of Zinc Materials Prepared by Powder Metallurgy. Metals. 2017;7:396. doi: 10.3390/met7100396. DOI

Sadighikia S., Abdolhosseinzadeh S., Asgharzadeh H. Production of high porosity Zn foams by powder metallurgy method. Powder Metall. 2015;58:61–66. doi: 10.1179/1743290114Y.0000000109. DOI

Samson S. Die kristallstruktur von Mg2Zn11—Isomorphie zwischen Mg2Zn11 und Mg2Cu6Al5. Acta Chem. Scand. 1949;3:835–843. doi: 10.3891/acta.chem.scand.03-0835. DOI

Smithells C.J., Gale W.F., Totemeier T.C. Smithells Metals Reference Book. 8th ed. Elsevier Butterworth-Heinemann; Amsterdam, The Netherlands: Boston, MA, USA: 2004.

Yang H.T., Qu X.H., Lin W.J., Chen D.F., Zhu D.H., Dai K.R., Zheng Y.F. Enhanced Osseointegration of Zn-Mg Composites by Tuning the Release of Zn Ions with Sacrificial Mg-Rich Anode Design. ACS Biomater. Sci. Eng. 2019;5:453–467. doi: 10.1021/acsbiomaterials.8b01137. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Advanced Zinc-Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering

. 2022 Jul 30 ; 15 (15) : . [epub] 20220730

Advanced Powder Metallurgy Technologies

. 2020 Apr 08 ; 13 (7) : . [epub] 20200408

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...