Zn-Mg Biodegradable Composite: Novel Material with Tailored Mechanical and Corrosion Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-06110S
Grantová Agentura České Republiky
21-SVV/2019
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31783622
PubMed Central
PMC6926700
DOI
10.3390/ma12233930
PII: ma12233930
Knihovny.cz E-zdroje
- Klíčová slova
- biomaterials, metallic composites, powder technology, zinc,
- Publikační typ
- časopisecké články MeSH
Zinc-based alloys represent one of the most highly developed areas regarding biodegradable materials. Despite this, some general deficiencies such as cytotoxicity and poor mechanical properties (especially elongation), are not properly solved. In this work, a Zn-5Mg (5 wt.% Mg) composite material with tailored mechanical and superior corrosion properties is prepared by powder metallurgy techniques. Pure Zn and Mg are mixed and subsequently compacted by extrusion at 200 °C and an extrusion ratio of 10. The final product possesses appropriate mechanical properties (tensile yield strength = 148 MPa, ultimate tensile strength = 183 MPa, and elongation = 16%) and decreased by four times the release of Zn in the initial stage of degradation compared to pure Zn, which can highly decrease cytotoxicity effects and therefore positively affect the initial stage of the healing process.
Zobrazit více v PubMed
Vimalanandan A., Bashir A., Rohwerder M. Zn-Mg and Zn-Mg-Al alloys for improved corrosion protection of steel: Some new aspects. Mater. Corros. 2014;65:392–400. doi: 10.1002/maco.201307586. DOI
Hausbrand R., Stratmann M., Rohwerder M. Corrosion of zinc–magnesium coatings: Mechanism of paint delamination. Corros. Sci. 2009;51:2107–2114. doi: 10.1016/j.corsci.2009.05.042. DOI
Prosek T., Nazarov A., Bexell U., Thierry D., Serak J. Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions. Corros. Sci. 2008;50:2216–2231. doi: 10.1016/j.corsci.2008.06.008. DOI
Jin H., Zhao S., Guillory R., Bowen P.K., Yin Z., Griebel A., Schaffer J., Earley E.J., Goldman J., Drelich J.W. Novel high-strength, low-alloys Zn-Mg (<0.1 wt% Mg) and their arterial biodegradation. Mater. Sci. Eng. C. 2018;84:67–79. doi: 10.1016/j.msec.2017.11.021. PubMed DOI PMC
Bowen P.K., Guillory R.J., Shearier E.R., Seitz J.-M., Drelich J., Bocks M., Zhao F., Goldman J. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Mater. Sci. Eng. C. 2015;56:467–472. doi: 10.1016/j.msec.2015.07.022. PubMed DOI PMC
Yang H., Wang C., Liu C., Chen H., Wu Y., Han J., Jia Z., Lin W., Zhang D., Li W., et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials. 2017;145:92–105. doi: 10.1016/j.biomaterials.2017.08.022. PubMed DOI
Zheng Y.F., Gu X.N., Witte F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001. DOI
Vojtech D., Kubasek J., Serak J., Novak P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–3522. doi: 10.1016/j.actbio.2011.05.008. PubMed DOI
Su Y.C., Cockerill I., Wang Y.D., Qin Y.X., Chang L.Q., Zheng Y.F., Zhu D.H. Zinc-Based Biomaterials for Regeneration and Therapy. Trends Biotechnol. 2019;37:428–441. doi: 10.1016/j.tibtech.2018.10.009. PubMed DOI PMC
Venezuela J., Dargusch M.S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019;87:1–40. doi: 10.1016/j.actbio.2019.01.035. PubMed DOI
Li H.F., Xie X.H., Zheng Y.F., Cong Y., Zhou F.Y., Qiu K.J., Wang X., Chen S.H., Huang L., Tian L., et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 2015;5:10719. doi: 10.1038/srep10719. PubMed DOI PMC
Kubasek J., Vojtech D., Jablonska E., Pospisilova I., Lipov J., Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. Mater. Sci. Eng. C. 2016;58:24–35. doi: 10.1016/j.msec.2015.08.015. PubMed DOI
Mostaed E., Sikora-Jasinska M., Drelich J.W., Vedani M. Zinc-based alloys for degradable vascular scent applications. Acta Biomater. 2018;71:1–23. doi: 10.1016/j.actbio.2018.03.005. PubMed DOI PMC
Levy G.K., Goldman J., Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants-A Review Paper. Metals. 2017;7:18. doi: 10.3390/met7100402. DOI
Haase H., Hebel S., Engelhardt G., Rink L. The biochemical effects of extracellular Zn(2+) and other metal ions are severely affected by their speciation in cell culture media. Metallomics. 2015;7:102–111. doi: 10.1039/C4MT00206G. PubMed DOI
Gu X.-N., Zheng Y.-F. A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China. 2010;4:111–115. doi: 10.1007/s11706-010-0024-1. DOI
Zhu D., Su Y., Young M.L., Ma J., Zheng Y., Tang L. Biological Responses and Mechanisms of Human Bone Marrow Mesenchymal Stem Cells to Zn and Mg Biomaterials. ACS Appl. Mater. Interfaces. 2017;9:27453–27461. doi: 10.1021/acsami.7b06654. PubMed DOI
Jablonska E., Vojtech D., Fousova M., Kubasek J., Lipov J., Fojt J., Ruml T. Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy. Mater. Sci. Eng. C. 2016;68:198–204. doi: 10.1016/j.msec.2016.05.114. PubMed DOI
Krystýnová M., Doležal P., Fintová S., Březina M., Zapletal J., Wasserbauer J. Preparation and Characterization of Zinc Materials Prepared by Powder Metallurgy. Metals. 2017;7:396. doi: 10.3390/met7100396. DOI
Sadighikia S., Abdolhosseinzadeh S., Asgharzadeh H. Production of high porosity Zn foams by powder metallurgy method. Powder Metall. 2015;58:61–66. doi: 10.1179/1743290114Y.0000000109. DOI
Samson S. Die kristallstruktur von Mg2Zn11—Isomorphie zwischen Mg2Zn11 und Mg2Cu6Al5. Acta Chem. Scand. 1949;3:835–843. doi: 10.3891/acta.chem.scand.03-0835. DOI
Smithells C.J., Gale W.F., Totemeier T.C. Smithells Metals Reference Book. 8th ed. Elsevier Butterworth-Heinemann; Amsterdam, The Netherlands: Boston, MA, USA: 2004.
Yang H.T., Qu X.H., Lin W.J., Chen D.F., Zhu D.H., Dai K.R., Zheng Y.F. Enhanced Osseointegration of Zn-Mg Composites by Tuning the Release of Zn Ions with Sacrificial Mg-Rich Anode Design. ACS Biomater. Sci. Eng. 2019;5:453–467. doi: 10.1021/acsbiomaterials.8b01137. PubMed DOI
Advanced Zinc-Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering
Advanced Powder Metallurgy Technologies