Population history and genetic adaptation of the Fulani nomads: inferences from genome-wide data and the lactase persistence trait
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
621-2014-5211
Vetenskapsrådet
759933
European Research Council - International
19-09352S-P505
Grant Agency of the Czech Republic
320030_159669
Swiss National Science Foundation - Switzerland
PubMed
31791255
PubMed Central
PMC6888939
DOI
10.1186/s12864-019-6296-7
PII: 10.1186/s12864-019-6296-7
Knihovny.cz E-zdroje
- Klíčová slova
- Adaptive gene-flow, Fulani people, GWAS, Lactase persistence, Pastoralism,
- MeSH
- celogenomová asociační studie MeSH
- černoši genetika MeSH
- laktasa genetika MeSH
- lidé MeSH
- molekulární evoluce MeSH
- osoby s přechodným pobytem a migranti MeSH
- tok genů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- laktasa MeSH
BACKGROUND: Human population history in the Holocene was profoundly impacted by changes in lifestyle following the invention and adoption of food-production practices. These changes triggered significant increases in population sizes and expansions over large distances. Here we investigate the population history of the Fulani, a pastoral population extending throughout the African Sahel/Savannah belt. RESULTS: Based on genome-wide analyses we propose that ancestors of the Fulani population experienced admixture between a West African group and a group carrying both European and North African ancestries. This admixture was likely coupled with newly adopted herding practices, as it resulted in signatures of genetic adaptation in contemporary Fulani genomes, including the control element of the LCT gene enabling carriers to digest lactose throughout their lives. The lactase persistence (LP) trait in the Fulani is conferred by the presence of the allele T-13910, which is also present at high frequencies in Europe. We establish that the T-13910 LP allele in Fulani individuals analysed in this study lies on a European haplotype background thus excluding parallel convergent evolution. We furthermore directly link the T-13910 haplotype with the Lactase Persistence phenotype through a Genome Wide Association study (GWAS) and identify another genomic region in the vicinity of the SPRY2 gene associated with glycaemic measurements after lactose intake. CONCLUSIONS: Our findings suggest that Eurasian admixture and the European LP allele was introduced into the Fulani through contact with a North African population/s. We furthermore confirm the link between the lactose digestion phenotype in the Fulani to the MCM6/LCT locus by reporting the first GWAS of the lactase persistence trait. We also explored other signals of recent adaptation in the Fulani and identified additional candidates for selection to adapt to herding life-styles.
Department of Genetics and Evolution Anthropology Unit University of Geneva Geneva Switzerland
Institute of Genetics and Genomics in Geneva Geneva Switzerland
Palaeo Research Institute University of Johannesburg P O Box 524 Auckland Park 2006 South Africa
Zobrazit více v PubMed
Stenning DJ. Transhumance, migratory drift, migration; patterns of pastoral Fulani nomadism. J R Anthropol Inst G B Irel. 1957;87(1):57–73.
Delmet C. Les Peuls nomades au Soudan. In: Diallo Y, Schlee G, editors. L'ethnicité peule dans des contextes nouveaux. Paris: Karthala; 2000. pp. 191–206.
Lam AM. De l'origine égyptienne des Peuls: Editions Présence Africaine. 2001.
Newman JL. The peopling of Africa. New Haven: Yale University Press; 1995.
Fay C. Les derniers seront les premiers: peuplement et pouvoirs mandingues et peuls au Maasina (Mali) In: De Bruijn M, Van Dijk H, editors. Peuls et Mandingues: Dialectique des Constructions Identitaires. Paris: Kathala; 1997. pp. 165–191.
Ba AH, Daget J. L'Empire peul du Macina: Mouton et Cie. 1962.
Johnston HAS. The Fulani empire of Sokoto. Oxford: Oxford University Press; 1967.
McIntosh R, McIntosh SK, Bocoum H. The search for Takrur: archaeological excavations and reconnaissance along the middle Senegal Valley: the Yale Peabody museum. 2016.
Schultz EA. From pagan to Pullo: ethnic identity change in northern Cameroon. Africa. 1984;54(1):33–65. doi: 10.2307/1160143. DOI
de Bruijn M, van Dijk H. Arid ways. Cultural understanding of insecurity in Fulbe society, Central Mali. Amsterdam: Thela publishers; 1995.
Dupire M. Peuls nomades, Étude descriptive des Wodaabé du Sahel nigérien. Paris: Karthala; 1962.
Boutrais J. Des Peul en savanes humides. Développment pastoral dans l’ouest africain. Paris: Editions de l'ORSTOM; 1988.
Benoit M. Nature peul du Yatenga. Remarques sur le pastoralisme en pays mossi. 1982. p. 143.
Riesman R. Société et liberté chez les Peul Djelgôbé de Haute Volta. Paris: La Haye, Mouton; 1974.
Greenberg JH. The languages of Africa. Bloomington: Indiana University Press; 1963.
Podgorna E, Diallo I, Vangenot C, Sanchez-Mazas A, Sabbagh A, Cerny V, Poloni ES. Variation in NAT2 acetylation phenotypes is associated with differences in food-producing subsistence modes and ecoregions in Africa. BMC Evol Biol. 2015;15:263. doi: 10.1186/s12862-015-0543-6. PubMed DOI PMC
Triska P, Soares P, Patin E, Fernandes V, Cerny V, Pereira L. Extensive admixture and selective pressure across the Sahel Belt. Genome Biol Evol. 2015;7(12):3484–3495. doi: 10.1093/gbe/evv236. PubMed DOI PMC
Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, Powell K, Mortensen HM, Hirbo JB, Osman M, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet. 2007;39(1):31–40. doi: 10.1038/ng1946. PubMed DOI PMC
Schlebusch Carina M, Sjödin Per, Skoglund Pontus, Jakobsson Mattias. Stronger signal of recent selection for lactase persistence in Maasai than in Europeans. European Journal of Human Genetics. 2012;21(5):550–553. doi: 10.1038/ejhg.2012.199. PubMed DOI PMC
Liebert A, Lopez S, Jones BL, Montalva N, Gerbault P, Lau W, Thomas MG, Bradman N, Maniatis N, Swallow DM. World-wide distributions of lactase persistence alleles and the complex effects of recombination and selection. Hum Genet. 2017;136(11–12):1445–1453. doi: 10.1007/s00439-017-1847-y. PubMed DOI PMC
Breton G, Schlebusch CM, Lombard M, Sjodin P, Soodyall H, Jakobsson M. Lactase persistence alleles reveal partial east african ancestry of southern african Khoe pastoralists. Curr Biol. 2014;24(8):852–858. doi: 10.1016/j.cub.2014.02.041. PubMed DOI
Macholdt E, Lede V, Barbieri C, Mpoloka SW, Chen H, Slatkin M, Pakendorf B, Stoneking M. Tracing pastoralist migrations to southern Africa with lactase persistence alleles. Curr Biol. 2014;24(8):875–879. doi: 10.1016/j.cub.2014.03.027. PubMed DOI PMC
Durham W. The evolution of adults lactose absortion. Coevolution genes, culture and human diversity. Standford: Standford University Press; 1992.
Swallow DM. Genetics of lactase persistence and lactose intolerance. Annu Rev Genet. 2003;37:197–219. doi: 10.1146/annurev.genet.37.110801.143820. PubMed DOI
Hollox EJ, Poulter M, Zvarik M, Ferak V, Krause A, Jenkins T, Saha N, Kozlov AI, Swallow DM. Lactase haplotype diversity in the Old World. Am J Hum Genet. 2001;68(1):160–172. doi: 10.1086/316924. PubMed DOI PMC
Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA, Rhodes M, Reich DE, Hirschhorn JN. Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet. 2004;74(6):1111–1120. doi: 10.1086/421051. PubMed DOI PMC
Mulcare CA, Weale ME, Jones AL, Connell B, Zeitlyn D, Tarekegn A, Swallow DM, Bradman N, Thomas MG. The T allele of a single-nucleotide polymorphism 13.9 kb upstream of the lactase gene (LCT) (C-13.9kbT) does not predict or cause the lactase-persistence phenotype in Africans. Am J Hum Genet. 2004;74(6):1102–1110. doi: 10.1086/421050. PubMed DOI PMC
Itan Y, Jones BL, Ingram CJ, Swallow DM, Thomas MG. A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evol Biol. 2010;10:36. doi: 10.1186/1471-2148-10-36. PubMed DOI PMC
Ranciaro A, Campbell MC, Hirbo JB, Ko WY, Froment A, Anagnostou P, Kotze MJ, Ibrahim M, Nyambo T, Omar SA, et al. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am J Hum Genet. 2014;94(4):496–510. doi: 10.1016/j.ajhg.2014.02.009. PubMed DOI PMC
Schlebusch CM. Population migration and adaptation during the African Holocene: a genetic perspective. In: Sahle Y, Reyes-Centeno H, Bentz C, editors. Modern Human Origins and Dispersal. Kerns Verlag: Tuebingen; 2019.
Schlebusch CM, Jakobsson M. Tales of human migration, admixture, and selection in Africa. Annu Rev Genomics Hum Genet. 2018;19:405–428. doi: 10.1146/annurev-genom-083117-021759. PubMed DOI
Priehodova E, Abdelsawy A, Heyer E, Cerny V. Lactase persistence variants in Arabia and in the African Arabs. Hum Biol. 2014;86(1):7–18. doi: 10.3378/027.086.0101. PubMed DOI
Priehodová Edita, Austerlitz Frédéric, Čížková Martina, Mokhtar Mohammed G., Poloni Estella S., Černý Viktor. The historical spread of Arabian Pastoralists to the eastern African Sahel evidenced by the lactase persistence −13,915*G allele and mitochondrial DNA. American Journal of Human Biology. 2017;29(3):e22950. doi: 10.1002/ajhb.22950. PubMed DOI
Enattah NS, Jensen TG, Nielsen M, Lewinski R, Kuokkanen M, Rasinpera H, El-Shanti H, Seo JK, Alifrangis M, Khalil IF, et al. Independent introduction of two lactase-persistence alleles into human populations reflects different history of adaptation to milk culture. Am J Hum Genet. 2008;82(1):57–72. doi: 10.1016/j.ajhg.2007.09.012. PubMed DOI PMC
Lokki AI, Jarvela I, Israelsson E, Maiga B, Troye-Blomberg M, Dolo A, Doumbo OK, Meri S, Holmberg V. Lactase persistence genotypes and malaria susceptibility in Fulani of Mali. Malar J. 2011;10:9. doi: 10.1186/1475-2875-10-9. PubMed DOI PMC
Haber Marc, Mezzavilla Massimo, Bergström Anders, Prado-Martinez Javier, Hallast Pille, Saif-Ali Riyadh, Al-Habori Molham, Dedoussis George, Zeggini Eleftheria, Blue-Smith Jason, Wells R. Spencer, Xue Yali, Zalloua Pierre A., Tyler-Smith Chris. Chad Genetic Diversity Reveals an African History Marked by Multiple Holocene Eurasian Migrations. The American Journal of Human Genetics. 2016;99(6):1316–1324. doi: 10.1016/j.ajhg.2016.10.012. PubMed DOI PMC
Cerny V, Kulichova I, Poloni ES, Nunes JM, Pereira L, Mayor A, Sanchez-Mazas A. Genetic history of the African Sahelian populations. Hla. 2018;91(3):153–166. doi: 10.1111/tan.13189. PubMed DOI
Henn BM, Botigue LR, Gravel S, Wang W, Brisbin A, Byrnes JK, Fadhlaoui-Zid K, Zalloua PA, Moreno-Estrada A, Bertranpetit J, et al. Genomic ancestry of north Africans supports back-to-Africa migrations. PLoS Genet. 2012;8(1):e1002397. doi: 10.1371/journal.pgen.1002397. PubMed DOI PMC
Cerny V, Hajek M, Bromova M, Cmejla R, Diallo I, Brdicka R. MtDNA of Fulani nomads and their genetic relationships to neighboring sedentary populations. Hum Biol. 2006;78(1):9–27. doi: 10.1353/hub.2006.0024. PubMed DOI
Cerezo M, Cerny V, Carracedo A, Salas A. New insights into the Lake Chad Basin population structure revealed by high-throughput genotyping of mitochondrial DNA coding SNPs. PLoS One. 2011;6(4):e18682. doi: 10.1371/journal.pone.0018682. PubMed DOI PMC
Kulichova I, Fernandes V, Deme A, Novackova J, Stenzl V, Novelletto A, Pereira L, Cerny V. Internal diversification of non-sub-Saharan haplogroups in Sahelian populations and the spread of pastoralism beyond the Sahara. Am J Phys Anthropol. 2017;164(2):424–434. doi: 10.1002/ajpa.23285. PubMed DOI
Buckova J, Cerny V, Novelletto A. Multiple and differentiated contributions to the male gene pool of pastoral and farmer populations of the African Sahel. Am J Phys Anthropol. 2013;151(1):10–21. doi: 10.1002/ajpa.22236. PubMed DOI
Cizkova M, Hofmanova Z, Mokhtar MG, Janousek V, Diallo I, Munclinger P, Cerny V. Alu insertion polymorphisms in the African Sahel and the origin of Fulani pastoralists. Ann Hum Biol. 2017;44(6):537–545. doi: 10.1080/03014460.2017.1328073. PubMed DOI
Becker RA, Wilks AR, Brownrigg R, Minka TP, Deckmyn A. maps: Draw Geographical Maps. R package version. 2018:3.3.0 https://package=maps/package=maps.
Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, Genschoreck T, Webster T, Reich D. Ancient admixture in human history. Genetics. 2012;192(3):1065–1093. doi: 10.1534/genetics.112.145037. PubMed DOI PMC
Matsumura S, Forster P. Generation time and effective population size in polar Eskimos. Proc Biol Sci. 2008;275(1642):1501–1508. doi: 10.1098/rspb.2007.1724. PubMed DOI PMC
Fenner JN. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am J Phys Anthropol. 2005;128(2):415–423. doi: 10.1002/ajpa.20188. PubMed DOI
Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4(3):e72. doi: 10.1371/journal.pbio.0040072. PubMed DOI PMC
Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449(7164):913–918. doi: 10.1038/nature06250. PubMed DOI PMC
Fox CS, Heard-Costa N, Cupples LA, Dupuis J, Vasan RS, Atwood LD. Genome-wide association to body mass index and waist circumference: the Framingham Heart Study 100K project. BMC Med Genet. 2007;8(Suppl 1):S18. doi: 10.1186/1471-2350-8-S1-S18. PubMed DOI PMC
Kathiresan S, Manning AK, Demissie S, D'Agostino RB, Surti A, Guiducci C, Gianniny L, Burtt NP, Melander O, Orho-Melander M, et al. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med Genet. 2007;8(Suppl 1):S17. doi: 10.1186/1471-2350-8-S1-S17. PubMed DOI PMC
Murea M, Lu L, Ma L, Hicks PJ, Divers J, McDonough CW, Langefeld CD, Bowden DW, Freedman BI. Genome-wide association scan for survival on dialysis in African-Americans with type 2 diabetes. Am J Nephrol. 2011;33(6):502–509. doi: 10.1159/000327985. PubMed DOI PMC
Dupuy C. Les apports de l'achéologie et de l'ethnologie a la connaisance de l'histoire ancienne des Peuls. In: Botte R, Boutrais J, Schmitz J, editors. Figures Peules. Paris: Karthala; 1999. pp. 53–72.
Gurdasani D, Carstensen T, Tekola-Ayele F, Pagani L, Tachmazidou I, Hatzikotoulas K, Karthikeyan S, Iles L, Pollard MO, Choudhury A, et al. The African genome variation project shapes medical genetics in Africa. Nature. 2015;517(7534):327–332. doi: 10.1038/nature13997. PubMed DOI PMC
Fregel R, Mendez FL, Bokbot Y, Martin-Socas D, Camalich-Massieu MD, Santana J, Morales J, Avila-Arcos MC, Underhill PA, Shapiro B, et al. Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc Natl Acad Sci U S A. 2018;115(26):6774–6779. doi: 10.1073/pnas.1800851115. PubMed DOI PMC
Busby G, Christ R, Band G, Leffler E, Le QS, Rockett K, Kwiatkowski D, Spencer C. Inferring adaptive gene-flow in recent African history. bioRxiv. 2017;1:205252.
Busby GB, Band G, Si Le Q, Jallow M, Bougama E, Mangano VD, Amenga-Etego LN, Enimil A, Apinjoh T, Ndila CM, et al. Admixture into and within sub-Saharan Africa. Elife 2016;5:e15266. PubMed PMC
Linseele V. From the first stock keepers to specialised pastoralists in the west African Savannah. In: Bollig M, Schnegg M, Wotzka H-P, editors. Pastoralism in Africa: Past, Present and Future. New York: Berghan Books; 2013.
Gerbault P, Liebert A, Itan Y, Powell A, Currat M, Burger J, Swallow DM, Thomas MG. Evolution of lactase persistence: an example of human niche construction. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366(1566):863–877. doi: 10.1098/rstb.2010.0268. PubMed DOI PMC
Kilpelainen TO. Zillikens MC, Stancakova A, Finucane FM, Ried JS, Langenberg C, Zhang W, Beckmann JS, Luan J, Vandenput L, et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet. 2011;43(8):753–760. doi: 10.1038/ng.866. PubMed DOI PMC
Shu XO, Long J, Cai Q, Qi L, Xiang YB, Cho YS, Tai ES, Li X, Lin X, Chow WH, et al. Identification of new genetic risk variants for type 2 diabetes. PLoS Genet. 2010;6(9):e1001127. doi: 10.1371/journal.pgen.1001127. PubMed DOI PMC
Imamura M, Iwata M, Maegawa H, Watada H, Hirose H, Tanaka Y, Tobe K, Kaku K, Kashiwagi A, Kawamori R, et al. Genetic variants at CDC123/CAMK1D and SPRY2 are associated with susceptibility to type 2 diabetes in the Japanese population. Diabetologia. 2011;54(12):3071–3077. doi: 10.1007/s00125-011-2293-3. PubMed DOI
Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, Payne AJ, Steinthorsdottir V, Scott RA, Grarup N, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505–1513. doi: 10.1038/s41588-018-0241-6. PubMed DOI PMC
Pappalardo Z, Gambhir Chopra D, Hennings TG, Richards H, Choe J, Yang K, Baeyens L, Ang K, Chen S, Arkin M, et al. A whole-genome RNA interference screen reveals a role for Spry2 in insulin transcription and the unfolded protein response. Diabetes. 2017;66(6):1703–1712. doi: 10.2337/db16-0962. PubMed DOI PMC
Arola H. Diagnosis of hypolactasia and lactose malabsorption. Scand J Gastroenterol Suppl. 1994;202:26–35. doi: 10.3109/00365529409091742. PubMed DOI
Coelho M, Sequeira F, Luiselli D, Beleza S, Rocha J. On the edge of bantu expansions: mtDNA, Y chromosome and lactase persistence genetic variation in southwestern Angola. BMC Evol Biol. 2009;9:80. doi: 10.1186/1471-2148-9-80. PubMed DOI PMC
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC
Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi: 10.1038/nature15393. PubMed DOI PMC
Schlebusch CM, Skoglund P, Sjodin P, Gattepaille LM, Hernandez D, Jay F, Li S, De Jongh M, Singleton A, Blum MG, et al. Genomic variation in seven Khoe-san groups reveals adaptation and complex African history. Science. 2012;338(6105):374–379. doi: 10.1126/science.1227721. PubMed DOI PMC
O'Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, Traglia M, Huang J, Huffman JE, Rudan I, et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 2014;10(4):e1004234. doi: 10.1371/journal.pgen.1004234. PubMed DOI PMC
Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2(12):e190. doi: 10.1371/journal.pgen.0020190. PubMed DOI PMC
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–909. doi: 10.1038/ng1847. PubMed DOI
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–1664. doi: 10.1101/gr.094052.109. PubMed DOI PMC
Behr AA, Liu KZ, Liu-Fang G, Nakka P, Ramachandran S. pong: fast analysis and visualization of latent clusters in population genetic data. Bioinformatics. 2016;32(18):2817–2823. doi: 10.1093/bioinformatics/btw327. PubMed DOI PMC
Maples BK, Gravel S, Kenny EE, Bustamante CD. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am J Hum Genet. 2013;93(2):278–288. doi: 10.1016/j.ajhg.2013.06.020. PubMed DOI PMC
Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI
Polzin T, Daneschmand SV. On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett. 2003;31:12–20. doi: 10.1016/S0167-6377(02)00185-2. DOI
Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23(10):1294–1296. doi: 10.1093/bioinformatics/btm108. PubMed DOI
Gautier M, Klassmann A, Vitalis R. Rehh 2.0: a reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol Ecol Resour. 2016;17(1):78–90. doi: 10.1111/1755-0998.12634. PubMed DOI
Ohta T, Kimura M. The effect of selected linked locus on heterozygosity of neutral alleles (the hitch-hiking effect) Genet Res. 1975;25(3):313–325. doi: 10.1017/S0016672300015731. PubMed DOI
Violence exposure is associated with preference for masculine faces: evidence from Senegal
Population history and admixture of the Fulani people from the Sahel
Demographic and Selection Histories of Populations Across the Sahel/Savannah Belt
Circum-Saharan Prehistory through the Lens of mtDNA Diversity