Chrysoviruses Inhabited Symbiotic Fungi of Lichens
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31817044
PubMed Central
PMC6949994
DOI
10.3390/v11121120
PII: v11121120
Knihovny.cz E-zdroje
- Klíčová slova
- ascomycete, chrysovirus, complete genome, confocal microscopy, saxicolous lichen,
- MeSH
- dvouvláknová RNA MeSH
- fylogeneze MeSH
- genom virový MeSH
- genomika metody MeSH
- lišejníky virologie MeSH
- mykoviry klasifikace fyziologie MeSH
- RNA-viry MeSH
- sekvence aminokyselin MeSH
- symbióza * MeSH
- virové proteiny chemie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dvouvláknová RNA MeSH
- virové proteiny MeSH
A lichen body is formed most often from green alga cells trapped in a net of ascomycetous fungi and accompanied by endolichenic or parasitic fungi, other algae, and symbiotic or free-living bacteria. The lichen's microcosmos is inhabited by mites, insects, and other animals for which the lichen is a source of food or a place to live. Novel, four-segmented dsRNA viruses were detected in saxicolous Chrysothrixchlorina and Leprariaincana lichens. Comparison of encoded genome proteins revealed classification of the viruses to the genus Alphachrysovirus and a relationship to chrysoviruses from filamentous ascomycetous fungi. We propose the names Chrysothrix chrysovirus 1 (CcCV1) and Lepraria chrysovirus 1 (LiCV1) as acronyms for these viruses. Surprisingly, observation of Chrysothrixchlorina hybridization with fluorescent-labelled virus probe by confocal microscope revealed that the CcCV1 virus is not present in the lichen body-forming fungus but in accompanying endolichenic Penicilliumcitreosulfuratum fungus. These are the first descriptions of mycoviruses from a lichen environment.
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Blair J.E. Fungi. In: Hedges S.B., Kumar S., editors. The Timetree of life. Oxford University Press; Oxford, UK: 2009. pp. 215–219.
Lawrey J.D., Diederich P. Lichenicolous fungi: Interactions, evolution, and biodiversity. Bryol. 2003;106:80–120. doi: 10.1639/0007-2745(2003)106[0080:LFIEAB]2.0.CO;2. DOI
Hodkinson B.P., Lutzoni F. A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis. 2009;49:163–180. doi: 10.1007/s13199-009-0049-3. DOI
Grube M., Berg G. Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol. Rev. 2009;23:72–85. doi: 10.1016/j.fbr.2009.10.001. DOI
Kellog J.J., Raja H.A. Endolichenic fungi: A new source of rich bioactive secondary metabolites on the horizon. Phytochem. Rev. 2017;16:271–293. doi: 10.1007/s11101-016-9473-1. DOI
Lawrey J.D. Chemical interactions between two lichen-degrading fungi. J. Chem. Ecol. 2000;26:1821–1831. doi: 10.1023/A:1005540622612. DOI
Lawrey J.D., Torzilli A.P., Chandhoeke V. Destruction of lichen chemical defenses by fungal pathogen. Am. J. Bot. 1999;86:187–189. doi: 10.2307/2656935. PubMed DOI
Hawksworth D.L. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 1988;96:3–20. doi: 10.1111/j.1095-8339.1988.tb00623.x. DOI
Armstrong R.A., Welch A.R. Competition in lichen communities. Symbiosis. 2007;43:1–12.
Richardson D.H.S. War in the world of lichens: Parasitism and symbiosis as exemplified by lichens and lichenicolous fungi. Mycol. Res. 1999;103:641–650. doi: 10.1017/S0953756298008259. DOI
Ghabrial S.A., Castón J.R., Jiang D., Nibert M.L., Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479–480:356–368. doi: 10.1016/j.virol.2015.02.034. PubMed DOI
Coy S.R., Gann E.R., Pound H.L., Short S.M., Wilhelm S.W. Viruses of eukaryotic algae: Diversity, methods for detection, and future directions. Viruses. 2018;10:487. doi: 10.3390/v10090487. PubMed DOI PMC
Xia H., Li T., Deng F., Hu Z. Freshwater cyanophages. Virol. Sin. 2013;28:253–259. doi: 10.1007/s12250-013-3370-1. PubMed DOI PMC
Petrzik K., Vondrák J., Barták M., Peksa O., Kubešová O. Lichens—New source or yet unknown host of herbaceous plant viruses? Eur. J. Plant. Pathol. 2014;138:549–559. doi: 10.1007/s10658-013-0246-z. DOI
Martin R.R., Zhou J., Tzanetakis I.E. Blueberry latent virus: An amalgam of the Partitiviridae and Totiviridae. Virus Res. 2011;155:175–180. doi: 10.1016/j.virusres.2010.09.020. PubMed DOI
Sabanadzovic S., Ghanem-Sabanadzovic N.A. Molecular characterization and detection of a tripartite cryptic virus from rose. J. Plant. Pathol. 2008;90:287–293.
Yolken R.H., Jones-Brando L., Dunigan D.D., Kannan G., Dickerson F., Severance E., Sabunciyan S., Talbot C.C., Prandovszky E., Gurnon J.R., et al. Chlorovirus ATCV-1 is part of the human oropharyngeal virome and is associated with changes in cognitive functions in humans and mice. Proc. Nat. Acad. Sci. USA. 2014;111:16106–16111. doi: 10.1073/pnas.1418895111. PubMed DOI PMC
Ekman S., Tønsberg T. Most species of Lepraria and Leproloma form a monophyletic group closely related to Stereocaulon. Mycol. Res. 2002;106:1262–1276. doi: 10.1017/S0953756202006718. DOI
Antane S., Caufield C.E., Hu W., Keeney D., Labthavikul P., Morris K., Naughton S.M., Petersen P.J., Rasmussen B.A., Singh G., et al. Pulvinones as bacterial cell wall biosynthesis inhibitors. Bioorg. Med. Chem. Lett. 2006;16:176–180. doi: 10.1016/j.bmcl.2005.09.021. PubMed DOI
Sahin E., Psav S.D., Avan I., Candan M., Sahinturk V., Koparal A.T. Vulpinic acid, a lichen metabolite emerges as a potential drug candidate in the therapy of oxidative stress-related diseases, such as atherosclerosis. Human Exp. Toxicol. 2019;38:675–684. doi: 10.1177/0960327119833745. PubMed DOI
Saag L., Saag A., Randlane T. World survey of the genus Lepraria (Stereocaulaceae, lichenized Ascomycota) Lichenol. 2009;41:25–60. doi: 10.1017/S0024282909007993. DOI
Lubicz J.V., Rush C.M., Payton M., Colberg T. Beet necrotic yellow vein virus accumulates inside resting spores and zoosporangia of its vector Polymyxa betae BNYVV infects P. betae. Virol. J. 2007;4:37. doi: 10.1186/1743-422X-4-37. PubMed DOI PMC
Morris T.J., Dodds J.A. Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology. 1979;69:854–858. doi: 10.1094/Phyto-69-854. DOI
Darissa O., Willingmann P., Adam G. Optimized approaches for the sequence determination of double-stranded RNA templates. J. Virol. Methods. 2010;169:397–403. doi: 10.1016/j.jviromet.2010.08.013. PubMed DOI
White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Academic Press; San Diego, CA, USA: 1990. pp. 315–322.
Gasulla F., Guéra A., Barreno E. A simple and rapid method for isolating lichen photobionts. Symbiosis. 2010;51:175–179. doi: 10.1007/s13199-010-0064-4. DOI
Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–4882. doi: 10.1093/nar/25.24.4876. PubMed DOI PMC
Kumar S., Stecher G., Tamura K. Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Gao J.X., Chen J. Transcriptome analysis identifies candidate genes associated with melanin and toxin biosynthesis and pathogenicity of the maize pathogen, Curvularia lunata. J. Phytopathol. 2018;166:233–241. doi: 10.1111/jph.12680. DOI
Baschien C., Manz W., Neu T.R., Marvanová L., Szewzyk U. In situ detection of freshwater fungi in an alpine stream by new taxon-specific fluorescence in situ hybridization probes. Appl. Environ. Microb. 2008;74:6427–6436. doi: 10.1128/AEM.00815-08. PubMed DOI PMC
Zimmermann L., Stephens A., Nam S.Z., Rau D., Kübler J., Lozajic M., Gabler F., Söding J., Lupas A.N., Alva V. A completely reimplemented MPI Bioinformatics Toolkit with a new HHpred server at its core. J. Mol. Biol. 2018;430:2237–2243. doi: 10.1016/j.jmb.2017.12.007. PubMed DOI
ICTV Taxonomy history: Alphachrysovirus, 2018b. [(accessed on 4 November 2019)]; Available online: https://talk.ictvonline.org//taxonomy/p/taxonomy-history?taxnode_id=201852890.
Visagie C.M., Seifert K.A., Houbraken J., Samson R.A., Jacobs K. A phylogenetic revision of Penicillium sect. Exilicaulis, including nine new species from fynbos in South Africa. IMA Fungus. 2016;7:75–117. doi: 10.5598/imafungus.2016.07.01.06. PubMed DOI PMC
Ghabrial S.A., Castón J.R. Chrysoviridae. In: King A.M.Q., Adams M.J., Carstens E.B., Lefkowitz E.J., editors. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier; Amsterdam, The Netherlands: 2012. pp. 509–513.
Webster C.L., Waldron F.M., Robertson S., Crowson D., Ferrari G., Quintana J.F., Brouqui J.M., Bayne E.H., Longdon B., Buck A.H., et al. The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster. PLoS Biol. 2015;13:e1002210. doi: 10.1371/journal.pbio.1002210. PubMed DOI PMC
Shi M., Neville P., Nicholson J., Eden J.S., Imrie A., Holmes E.C. High-Resolution metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in Western Australia. J. Virol. 2017;92:e00680-17. doi: 10.1128/JVI.00680-17. PubMed DOI PMC
Liu H., Fu Y., Xie J., Cheng J., Ghabrial S.A., Li G., Yi X., Jiang D. Discovery of novel dsRNA viral sequences by in silico cloning and implications for viral diversity, host range and evolution. PLoS ONE. 2012;7:e42147. doi: 10.1371/journal.pone.0042147. PubMed DOI PMC
Petrzik K. Evolutionary forces at work in partitiviruses. Virus Genes. 2019;55:563–573. doi: 10.1007/s11262-019-01680-0. PubMed DOI
Li L., Liu J., Xu A., Wang T., Chen J., Zhu X. Molecular characterization of a trisegmented chrysovirus isolated from the radish Raphanus sativus. Virus Res. 2016;176:169–178. doi: 10.1016/j.virusres.2013.06.004. PubMed DOI
Higashiura T., Katoh Y., Urayama S., Hayashi O., Aihara M., Fukuhara T., Fuji S., Kobayashi T., Hase S., Arie T., et al. Magnaporthe oryzae chrysovirus 1 strain D confers growth inhibition to the host fungus and exhibit multiform viral structural proteins. Virology. 2019;535:241–254. doi: 10.1016/j.virol.2019.07.014. PubMed DOI
Ejmal M.A., Holland D.J., MacDiarmid R.M., Pearson M.N. A novel chrysovirus from a clinical isolate of Aspergillus thermomutatus affects sporulation. PLoS ONE. 2018;13:e0209443. doi: 10.1371/journal.pone.0209443. PubMed DOI PMC
Ghabrial S.A., Suzuki N. Viruses of plant pathogenic fungi. Annu. Rev. Phytopathol. 2009;47:353–384. doi: 10.1146/annurev-phyto-080508-081932. PubMed DOI
Torres-Trenas A., Prieto P., Cañizares M.C., García-Pedrajas M.D., Pérez-Artés E. Mycovirus Fusarium oxysporum f. sp. dianthi virus 1 decreases the colonizing efficiency of its fungal host. Front. Cell. Infect. Mi. 2019;9:51. doi: 10.3389/fcimb.2019.00051. PubMed DOI PMC
Wang L., Jiang J., Wang Y., Hong N., Zhang F., Xu W., Wang G. Hypovirulence of the phytopathogenic fungus Botryosphaeria dothidea: Association with a coinfecting chrysovirus and a partitivirus. J. Virol. 2014;88:7517–7527. doi: 10.1128/JVI.00538-14. PubMed DOI PMC
Urayama S., Kato S., Suzuki Y., Aoki N., Le M.T., Arie T., Teraoka T., Fukuhara T., Moriyama H. Mycoviruses related to chrysovirus affect vegetative growth in the rice blast fungus Magnaporthe oryzae. J. Gen. Virol. 2010;91:3085–3094. doi: 10.1099/vir.0.025411-0. PubMed DOI
Urayama S., Sakoda H., Takai R., Katoh Y., Minh L.T., Fukuhara T., Arie T., Teraoka T., Moriyama H. A dsRNA mycovirus, Magnaporthe oryzae chrysovirus 1-B, suppresses vegetative growth and development of the rice blast fungus. Virology. 2014;448:265–273. doi: 10.1016/j.virol.2013.10.022. PubMed DOI
Harmsen M.C., Tolner B., Kram A., Go S.J., de Haan A., Wessels J.G.H. Sequences of three dsRNAs associated with La France disease of the cultivated mushroom (Agaricus bisporus) Curr. Genet. 1991;20:137–144. doi: 10.1007/BF00312776. PubMed DOI
Moriyama H., Urayama S., Higashiura T., Le T.M., Komatsu K. Chrysoviruses in Magnaporthe oryzae. Viruses. 2018;10:697. doi: 10.3390/v10120697. PubMed DOI PMC
Aoki N., Moriyama H., Kodama M., Arie T., Teraoka T., Fukuhara T. A novel mycovirus associated with four double-stranded RNAs affects host fungal growth in Alternaria alternata. Virus Res. 2009;140:179–187. doi: 10.1016/j.virusres.2008.12.003. PubMed DOI
Kim J.M., Jung J.E., Park J.A., Park S.M., Cha B.J., Kim D.H. Biological function of a novel chrysovirus CnV1-BS122, in the Korean Cryphonectria nitschkei BS122 strain. J. Biosci. Bioeng. 2012;115:1–3. doi: 10.1016/j.jbiosc.2012.08.007. PubMed DOI
Herrero N. Identification and sequence determination of a new chrysovirus infecting the entomopathogenic fungus Isaria javanica. Arch. Virol. 2017;162:1113–1117. doi: 10.1007/s00705-016-3194-z. PubMed DOI