Evolutionary forces at work in partitiviruses
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MEMOBIc
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO60077344
Akademie Věd České Republiky
PubMed
31230256
DOI
10.1007/s11262-019-01680-0
PII: 10.1007/s11262-019-01680-0
Knihovny.cz E-zdroje
- Klíčová slova
- Capsid protein, Negative/positive selection, RNA polymerase, Reassortment, Symbiosis,
- MeSH
- dvouvláknová RNA genetika MeSH
- genetická variace MeSH
- molekulární evoluce * MeSH
- mutace MeSH
- RNA virová genetika MeSH
- RNA-dependentní RNA-polymerasa genetika MeSH
- RNA-viry genetika MeSH
- virové plášťové proteiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- dvouvláknová RNA MeSH
- RNA virová MeSH
- RNA-dependentní RNA-polymerasa MeSH
- virové plášťové proteiny MeSH
The family Partitiviridae consists of dsRNA viruses with genome separated into two segments and encoding replicase and capsid protein only. We examined the nucleotide diversity expressed as the ratio dN/dS of nonsynonymous and synonymous substitutions, which has been calculated for 12 representative viruses of all five genera of partitiviruses. We can state that strong purifying selection works on both the RdRp and CP genes and propose that putative positive selection occurs also on the RdRp genes in two viruses. Among the 95 evaluated viruses, wherein both segments had been sequenced, 8 viruses in betapartitiviruses and 9 in alphapartitiviruses were identified as reassortment candidates because they differ extremely in their CP identity even as they are related in terms of RdRp. Furthermore, there are indications that reassortants are present among isolates of different viruses.
Zobrazit více v PubMed
Virus Genes. 2003 Dec;27(3):249-56 PubMed
Mycol Res. 2004 Jun;108(Pt 6):635-40 PubMed
Virus Genes. 2005 Oct;31(2):175-83 PubMed
J Virol. 2007 Feb;81(4):1746-61 PubMed
Phytopathology. 2007 Oct;97(10):1255-62 PubMed
Bioinformatics. 2009 Jun 1;25(11):1451-2 PubMed
Virology. 2010 Feb 20;397(2):399-408 PubMed
Biophys J. 2010 Jul 21;99(2):685-94 PubMed
Phytopathology. 2010 Sep;100(9):922-30 PubMed
J Virol. 2010 Nov;84(22):11876-87 PubMed
Fungal Biol. 2010 Nov-Dec;114(11-12):955-65 PubMed
Infect Genet Evol. 2011 Jul;11(5):812-24 PubMed
PLoS Pathog. 2011 Jul;7(7):e1002146 PubMed
Fungal Genet Biol. 2011 Nov;48(11):1071-5 PubMed
PLoS One. 2012;7(7):e42147 PubMed
J Virol. 2013 Feb;87(4):2330-41 PubMed
Arch Virol. 2013 Jul;158(7):1613-5 PubMed
Arch Virol. 2013 Sep;158(9):1943-52 PubMed
Viruses. 2013 Oct 09;5(10):2512-30 PubMed
Virus Res. 2014 Aug 8;188:128-41 PubMed
Virology. 2014 May;456-457:220-6 PubMed
Evol Appl. 2014 May;7(5):580-96 PubMed
J Virol. 2014 Sep 1;88(17):10120-33 PubMed
ISME J. 2015 Feb;9(2):497-507 PubMed
Virus Res. 2015 Jan 2;195:47-56 PubMed
Virus Res. 2015 Jan 2;195:119-23 PubMed
Arch Virol. 2015 Aug;160(8):1967-75 PubMed
Virus Res. 2016 Jan 4;211:69-72 PubMed
Virus Res. 2016 Jul 2;219:62-72 PubMed
Virology. 2016 Jan;487:188-97 PubMed
Arch Virol. 2016 May;161(5):1405-9 PubMed
Mol Biol Evol. 2016 Jul;33(7):1870-4 PubMed
Virus Evol. 2015 May 26;1(1):vev003 PubMed
PLoS Pathog. 2016 Dec 27;12(12):e1006076 PubMed
Sci Rep. 2017 May 15;7(1):1908 PubMed
Virology. 2017 Oct;510:297-304 PubMed
Virus Genes. 2018 Feb;54(1):33-40 PubMed
PLoS Pathog. 2017 Nov 7;13(11):e1006685 PubMed
PLoS One. 2017 Nov 29;12(11):e0187799 PubMed
MBio. 2018 Jun 12;9(3): PubMed
Viruses. 2018 Sep 07;10(9): PubMed
Plant Dis. 2017 May;101(5):726-733 PubMed
Mol Biol Evol. 1986 Sep;3(5):418-26 PubMed