Rapid methods for the separation of natural mixtures of beauverolides, cholesterol acyltransferase inhibitors, isolated from the fungus Isaria fumosorosea
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
15-32432A
Agentura Pro Zdravotnický Výzkum České Republiky
17-12648S
Czech Science Foundation
PubMed
31833157
DOI
10.1002/jssc.201901084
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer's disease, atherosclerosis, capillary electrophoresis, hydrophobic peptides, thin layer chromatography,
- MeSH
- anticholesteremika chemie izolace a purifikace MeSH
- chromatografie kapalinová MeSH
- Cordyceps chemie MeSH
- depsipeptidy chemie izolace a purifikace MeSH
- hmotnostní spektrometrie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anticholesteremika MeSH
- beauverolides MeSH Prohlížeč
- depsipeptidy MeSH
Beauverolides (beauveriolides) are abundant, biologically active cyclodepsipeptides produced by many entomopathogenic fungi, including those that are used as biopesticides. Beauverolides act as cholesterol acyltransferase inhibitors in humans; thus, their mode of action has been the subject of pharmacological and clinical research. The cost-effective analytical methods are needed for fast, routine laboratory analysis of beauverolides. We isolated beauverolides from the fungal strain Isaria fumosorosea PFR 97-Apopka and opened the rings of the isolated beauverolides using a pyridine alkaline medium. We separated fractions of cyclic and linearized beauverolides by thin-layer chromatography, and found the chloroform-acetate (9:1, v/v) and chloroform-acetonitrile-acetate (8:1:1, v/v/v) mobile phases, respectively, to be the most efficient. We examined all the fractions by liquid chromatography-mass spectrometry using ion trap and Orbitrap high resolution mass spectrometry. For rapid screening of the contents of cyclic, and, particularly, linearized beauverolides, we developed a novel analytical method that consisted of using capillary electrophoresis coupled with contactless conductivity detection. Furthermore, we improved the separation of the peptides by applying capillary micellar electrokinetic chromatography with the N-cyclohexyl-2-aminoethanesulfonic acid:SDS:NaOH buffer, pH 9.8 as the background electrolyte. The described novel methods allow fast and cost-effective separation of chemically related groups of beauverolides.
Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Charles University 3rd Faculty of Medicine Prague Czech Republic
Zobrazit více v PubMed
Jegorov, A., Sedmera, P., Maťha, V., Šimek, P., Zahrradníčková, H., Landa, Z., Eyal, J., Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus. Phytochemistry 1994, 37, 1301-1303.
Madariaga-Mazon, A., Gonzalez-Andradeb, M., Toriello, C., Navarro-Barranco, H., Mata, R., Potent anti-calmodulin activity of cyclotetradepsipeptides isolated from Isaria fumosorosea using a newly designed biosensor. Nat. Prod. Commun. 2015, 10, 113-116.
Ohshiro, T., Kobayashi, K., Ohba, M., Matsuda, D., Rudel, L. L., Takahashi, T., Doi, T., Tomoda, H., Selective inhibition of sterol O-acyltransferase 1 isozyme by beauveriolide III in intact cells. Sci. Rep. 2017, 7, 4163.
Doi, T., Muraoka, T., Ohshiro, T., Matsuda, D., Yoshida, M., Takahashi, T., Omura, S., Tomoda, H., Conformationally restricted analog and biotin-labeled probe based on beauveriolide III. Bioorg. Med. Chem. Lett. 2012, 22, 696-699.
Ohshiro, T., Rudel, L. L., Omura, S., Tomoda, H., Selectivity of microbial acyl-CoA: cholesterol acyltransferase inhibitors toward isozymes. J. Antibiot., 2007, 60, 43-51.
Witter, D. P., Chen, Y., Rogel, J. K., Boldt, G. E., Wentworth Jr. P., The natural products beauveriolide I and III: a new class of beta-amyloid-lowering compounds. ChemBioChem, 2009, 10, 1344-1347.
Namatame, I., Tomoda, H., Ishibashi, S., Omura, S., Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages. Proc. Natl. Acad. Sci. USA 2004, 101, 737-742.
Tomoda, H., Doi, T., Discovery and combinatorial synthesis of fungal metabolites beauveriolides, novel antiatherosclerotic agents. Acc. Chem. Res. 2008, 41, 32-39.
Arthurs, S., Dara, S.K., Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 2019, 165, 13-21.
Kadlec, Z., Šimek, P., Heydová, A., Jegorov, A., Maťha, V., Landa, Z., Eyal, J., Chemotaxonomic discrimination among the fungal genera Tolypocladium, Beauveria and Paecilomyces. Biochem. Syst. Ecol. 1994, 22, 803-806.
Mochizuki, K., Ohmori, K., Tamura, H., Shizuri, Y., Nishiyama, S., Miyoshi, E., Yamamura, S., The structures of bioactive cyclodepsipeptides, beauveriolides I and II, metabolites of entomopathogenic fungi Beauveria sp. Bull. Chem. Soc. Jap. 1993, 66, 3041-3046.
Park, Y. J., Lee, S. R., Kim, D. M., Yu, J. S., Beemelmanns, C., Chung, K. H., Kim, K. H., The inhibitory effects of cyclodepsipeptides from the entomopathogenic fungus Beauveria bassiana on myofibroblast differentiation in A549 alveolar epithelial cells. Molecules 2018, 23, E2568.
Vilcinskas, A., Jegorov, A., Landa, Z., Götz, P., Maťha, V., Effects of beauverolide L and cyclosporin A on humoral and cellular immune response of the greater wax moth, Galleria mellonella. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1999, 122, 83-92.
Pól, J., Novák, P., Volný, M., Kruppa, G. H., Kostiainen, R., Lemr, K., Havlíček, V., Application of silicon nanowires and indium tin oxide surfaces in desorption electrospray ionization. Eur. J. Mass. Spectrom. 2008, 14, 391-399.
Asaff, A., Cerda-García-Rojas, C., de la Torre, M., Isolation of dipicolinic acid as an insecticidal toxin from Paecilomyces fumosoroseus. Appl. Microbiol. Biotechnol. 2005, 68, 542-547.
Oh, M. H., Cox, J. M., Quantitative analysis of the Bacillus cereus emetic toxin, cereulide, using micellar electrokinetic chromatography-capillary electrophoresis. J. Food Saf. 2010, 30, 652-665.
Terabe, S., Otsuka, K., Ichikawa, K., Tsuchiya, A., Ando, T., Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal. Chem. 1984, 56, 111-113.
Idei, M., Seprodi, J., Gyorffy, E., Hollósy, F., Vadász, Z. S., Mészáros, G., Teplán, I., Kéri, G., Micellar electrokinetic chromatography of highly hydrophobic peptides. Anal. Chim. Acta 1998, 372, 273-279.
Gong, S., Liu, F., Li, W., Gao, F., Gao, C., Liao, Y., Liu, H., Separation of hydrophobic solutes by organic-solvent-based micellar electrokinetic chromatography using cation surfactants. J. Chromatogr. A 2006, 1121, 274-279.
Fürtös-Matei, A., Day, R., St-Pierre, S. A., St-Pierre, L. G., Waldron, K. C., Micellar electrokinetic chromatography separations of dynorphin peptide analogs. Electrophoresis 2000, 21, 715-723.
Kašička, V., Recent developments in capillary and microchip electroseparations of peptides (2015 - mid 2017). Electrophoresis 2018, 39, 209-234.
Ehala, S., Kašička, V., Makrlík, E., Determination of stability constants of valinomycin complexes with ammonium and alkali metal ions by capillary affinity electrophoresis. Electrophoresis 2008, 29, 652-657.
Fukami, T., Yokoi, T., The emerging role of human esterases. Drug Metab. Pharmacokinet. 2012, 27, 466-477.
Kuzma, M., Jegorov, A., Kačer, P., Havlíček, V., Sequencing of new beauverolides by high-performance liquid chromatography and mass spectrometry. J. Mass Spectrom. 2001, 36, 1108-1115.
Heneberg, P., Jegorov, A., Šimek, P., Beauveriolide, I (beauverolide I), 98%. Available from: https://starfos.tacr.cz/cs/result/RIV%2F00216208%3A11120%2F16%3A43916178 (last time accessed: October 9, 2019).
Tůma, P., Rapid determination of globin chains in red blood cells by capillary electrophoresis using INSTCoated fused-silica capillary. J. Sep. Sci. 2014, 37, 1026-1032.
Tůma, P., Gojda, J., Rapid determination of branched chain amino acids in human blood plasma by pressure-assisted capillary electrophoresis with contactless conductivity detection. Electrophoresis 2015, 36, 1969-1975.
Tůma, P., Frequency-tuned contactless conductivity detector for the electrophoretic separation of clinical samples in capillaries with very small internal dimensions. J. Sep. Sci. 2017, 40, 940-947.
Vochyánová, B., Opekar, F., Tůma, P., Simultaneous and rapid determination of caffeine and taurine in energy drinks by MEKC in a short capillary with dual contactless conductivity/photometry detection. Electrophoresis 2014, 35, 1660-1665.