Temporal Dynamics of VEGFA-Induced VEGFR2/FAK Co-Localization Depend on SHB
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31847469
PubMed Central
PMC6953046
DOI
10.3390/cells8121645
PII: cells8121645
Knihovny.cz E-resources
- Keywords
- FAK, SHB, TIRF, VEGFR2, angiogenesis, focal adhesions,
- MeSH
- Adaptor Proteins, Signal Transducing metabolism MeSH
- Endothelial Cells metabolism MeSH
- Focal Adhesion Protein-Tyrosine Kinases genetics metabolism MeSH
- Neovascularization, Physiologic physiology MeSH
- HEK293 Cells MeSH
- Humans MeSH
- Mice, Inbred BALB C MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Cell Movement physiology MeSH
- Proto-Oncogene Proteins metabolism MeSH
- Vascular Endothelial Growth Factor Receptor-2 metabolism MeSH
- Vascular Endothelial Growth Factor A genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adaptor Proteins, Signal Transducing MeSH
- Focal Adhesion Protein-Tyrosine Kinases MeSH
- KDR protein, human MeSH Browser
- Kdr protein, mouse MeSH Browser
- Proto-Oncogene Proteins MeSH
- Vascular Endothelial Growth Factor Receptor-2 MeSH
- SHB protein, human MeSH Browser
- vascular endothelial growth factor A, mouse MeSH Browser
- Vascular Endothelial Growth Factor A MeSH
- VEGFA protein, human MeSH Browser
Focal adhesion kinase (FAK) is essential for vascular endothelial growth factor-A (VEGFA)/VEGF receptor-2 (VEGFR2)-stimulated angiogenesis and vascular permeability. We have previously noted that presence of the Src homology-2 domain adapter protein B (SHB) is of relevance for VEGFA-stimulated angiogenesis in a FAK-dependent manner. The current study was conducted in order address the temporal dynamics of co-localization between these components in HEK293 and primary lung endothelial cells (EC) by total internal reflection fluorescence microscopy (TIRF). An early (<2.5 min) VEGFA-induced increase in VEGFR2 co-localization with SHB was dependent on tyrosine 1175 in VEGFR2. VEGFA also enhanced SHB co-localization with FAK. FAK co-localization with VEGFR2 was dependent on SHB since it was significantly lower in SHB deficient EC after VEGFA addition. Absence of SHB also resulted in a gradual decline of VEGFR2 co-localization with FAK under basal (prior to VEGFA addition) conditions. A similar basal response was observed with expression of the Y1175F-VEGFR2 mutant in wild type EC. The distribution of focal adhesions in SHB-deficient EC was altered with a primarily perinuclear location. These live cell data implicate SHB as a key component regulating FAK activity in response to VEGFA/VEGFR2.
Department of Immunology Genetics and Pathology Uppsala University 75108 Uppsala Sweden
Department of Medical Cell Biology Uppsala University Box 571 75123 Uppsala Sweden
Institute of Molecular Genetics of the CAS 14220 Prague Czech Republic
See more in PubMed
Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 2004;25:581–611. doi: 10.1210/er.2003-0027. PubMed DOI
Heidenreich R., Machein M., Nicolaus A., Hilbig A., Wild C., Clauss M., Plate K.H., Breier G. Inhibition of solid tumor growth by gene transfer of VEGF receptor-1 mutants. Int. J. Cancer. 2004;111:348–357. doi: 10.1002/ijc.20260. PubMed DOI
Heidenreich R., Murayama T., Silver M., Essl C., Asahara T., Rocken M., Breier G. Tracking adult neovascularization during ischemia and inflammation using Vegfr2-LacZ reporter mice. J. Vasc. Res. 2008;45:437–444. doi: 10.1159/000126106. PubMed DOI
Claesson-Welsh L., Welsh M. VEGFA and tumour angiogenesis. J. Intern. Med. 2013;273:114–127. doi: 10.1111/joim.12019. PubMed DOI
Testini C., Smith R.O., Jin Y., Martinsson P., Sun Y., Hedlund M., Sainz-Jaspeado M., Shibuya M., Hellstrom M., Claesson-Welsh L. Myc-dependent endothelial proliferation is controlled by phosphotyrosine 1212 in VEGF receptor-2. EMBO Rep. 2019 doi: 10.15252/embr.201947845. PubMed DOI PMC
Chen X.L., Nam J.O., Jean C., Lawson C., Walsh C.T., Goka E., Lim S.T., Tomar A., Tancioni I., Uryu S., et al. VEGF-induced vascular permeability is mediated by FAK. Dev. Cell. 2012;22:146–157. doi: 10.1016/j.devcel.2011.11.002. PubMed DOI PMC
Tavora B., Batista S., Reynolds L.E., Jadeja S., Robinson S., Kostourou V., Hart I., Fruttiger M., Parsons M., Hodivala-Dilke K.M. Endothelial FAK is required for tumour angiogenesis. EMBO Mol. Med. 2010;2:516–528. doi: 10.1002/emmm.201000106. PubMed DOI PMC
Welsh M., Jamalpour M., Zang G., Akerblom B. The role of the Src Homology-2 domain containing protein B (SHB) in beta cells. J. Mol. Endocrinol. 2016;56:R21–R31. doi: 10.1530/JME-15-0228. PubMed DOI
Akerblom B., Zang G., Zhuang Z.W., Calounova G., Simons M., Welsh M. Heterogeneity among RIP-Tag2 insulinomas allows vascular endothelial growth factor-A independent tumor expansion as revealed by studies in Shb mutant mice: Implications for tumor angiogenesis. Mol. Oncol. 2012;6:333–346. doi: 10.1016/j.molonc.2012.01.006. PubMed DOI PMC
Christoffersson G., Zang G., Zhuang Z.W., Vagesjo E., Simons M., Phillipson M., Welsh M. Vascular adaptation to a dysfunctional endothelium as a consequence of Shb deficiency. Angiogenesis. 2012;15:469–480. doi: 10.1007/s10456-012-9275-z. PubMed DOI PMC
Funa N.S., Kriz V., Zang G., Calounova G., Akerblom B., Mares J., Larsson E., Sun Y., Betsholtz C., Welsh M. Dysfunctional microvasculature as a consequence of shb gene inactivation causes impaired tumor growth. Cancer Res. 2009;69:2141–2148. doi: 10.1158/0008-5472.CAN-08-3797. PubMed DOI
Nikpour M., Gustafsson K., Vagesjo E., Seignez C., Giraud A., Phillipson M., Welsh M. Shb deficiency in endothelium but not in leucocytes is responsible for impaired vascular performance during hindlimb ischaemia. Acta Physiol. (Oxf) 2015;214:200–209. doi: 10.1111/apha.12448. PubMed DOI
Zang G., Gustafsson K., Jamalpour M., Hong J., Genove G., Welsh M. Vascular dysfunction and increased metastasis of B16F10 melanomas in Shb deficient mice as compared with their wild type counterparts. BMC Cancer. 2015;15:234. doi: 10.1186/s12885-015-1269-y. PubMed DOI PMC
Zang G., Christoffersson G., Tian G., Harun-Or-Rashid M., Vagesjo E., Phillipson M., Barg S., Tengholm A., Welsh M. Aberrant association between vascular endothelial growth factor receptor-2 and VE-cadherin in response to vascular endothelial growth factor-a in Shb-deficient lung endothelial cells. Cell. Signal. 2013;25:85–92. doi: 10.1016/j.cellsig.2012.09.018. PubMed DOI
Holmqvist K., Cross M., Riley D., Welsh M. The Shb adaptor protein causes Src-dependent cell spreading and activation of focal adhesion kinase in murine brain endothelial cells. Cell. Signal. 2003;15:171–179. doi: 10.1016/S0898-6568(02)00076-1. PubMed DOI
Dergai O.V., Yaruchik A.M., Rynditch A.V. Focal adhesion kinase (FAK1) regulates SHB phosphorylation and its binding with a range of signaling proteins. Biopolym. Cell. 2016;32:34–40. doi: 10.7124/bc.00090A. DOI
Holmqvist K., Cross M.J., Rolny C., Hagerkvist R., Rahimi N., Matsumoto T., Claesson-Welsh L., Welsh M. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J. Biol. Chem. 2004;279:22267–22275. doi: 10.1074/jbc.M312729200. PubMed DOI
Alenkvist I., Dyachok O., Tian G., Li J., Mehrabanfar S., Jin Y., Birnir B., Tengholm A., Welsh M. Absence of Shb impairs insulin secretion by elevated FAK activity in pancreatic islets. J. Endocrinol. 2014;223:267–275. doi: 10.1530/JOE-14-0531. PubMed DOI
Gustafsson K., Heffner G., Wenzel P.L., Curran M., Grawe J., McKinney-Freeman S.L., Daley G.Q., Welsh M. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity. Exp. Cell Res. 2013;319:1852–1864. doi: 10.1016/j.yexcr.2013.03.020. PubMed DOI
Gustafsson K., Jamalpour M., Trinh C., Kharas M.G., Welsh M. The Src homology-2 protein Shb modulates focal adhesion kinase signaling in a BCR-ABL myeloproliferative disorder causing accelerated progression of disease. J. Hematol. Oncol. 2014;7:45. doi: 10.1186/1756-8722-7-45. PubMed DOI PMC
Kriz V., Mares J., Wentzel P., Funa N.S., Calounova G., Zhang X.Q., Forsberg-Nilsson K., Forsberg M., Welsh M. Shb null allele is inherited with a transmission ratio distortion and causes reduced viability in utero. Dev. Dyn. 2007;236:2485–2492. doi: 10.1002/dvdy.21257. PubMed DOI
Matsumoto T., Bohman S., Dixelius J., Berge T., Dimberg A., Magnusson P., Wang L., Wikner C., Qi J.H., Wernstedt C., et al. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J. 2005;24:2342–2353. doi: 10.1038/sj.emboj.7600709. PubMed DOI PMC
Yu Q., Shuai H., Ahooghalandari P., Gylfe E., Tengholm A. Glucose controls glucagon secretion by directly modulating cAMP in alpha cells. Diabetologia. 2019;62:1212–1224. doi: 10.1007/s00125-019-4857-6. PubMed DOI PMC
Gampel A., Moss L., Jones M.C., Brunton V., Norman J.C., Mellor H. VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood. 2006;108:2624–2631. doi: 10.1182/blood-2005-12-007484. PubMed DOI
Kanteti R., Batra S.K., Lennon F.E., Salgia R. FAK and paxillin, two potential targets in pancreatic cancer. Oncotarget. 2016;7:31586–31601. doi: 10.18632/oncotarget.8040. PubMed DOI PMC
Lundby A., Franciosa G., Emdal K.B., Refsgaard J.C., Gnosa S.P., Bekker-Jensen D.B., Secher A., Maurya S.R., Paul I., Mendez B.L., et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543–560.e526. doi: 10.1016/j.cell.2019.09.008. PubMed DOI
Jorgensen C., Sherman A., Chen G.I., Pasculescu A., Poliakov A., Hsiung M., Larsen B., Wilkinson D.G., Linding R., Pawson T. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science. 2009;326:1502–1509. doi: 10.1126/science.1176615. PubMed DOI
Takahashi T., Yamaguchi S., Chida K., Shibuya M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J. 2001;20:2768–2778. doi: 10.1093/emboj/20.11.2768. PubMed DOI PMC
Pedrosa A.R., Bodrug N., Gomez-Escudero J., Carter E.P., Reynolds L.E., Georgiou P.N., Fernandez I., Lees D.M., Kostourou V., Alexopoulou A.N., et al. Tumor Angiogenesis Is Differentially Regulated by Phosphorylation of Endothelial Cell Focal Adhesion Kinase Tyrosines-397 and -861. Cancer Res. 2019;79:4371–4386. doi: 10.1158/0008-5472.CAN-18-3934. PubMed DOI
Cross M.J., Lu L., Magnusson P., Nyqvist D., Holmqvist K., Welsh M., Claesson-Welsh L. The Shb adaptor protein binds to tyrosine 766 in the FGFR-1 and regulates the Ras/MEK/MAPK pathway via FRS2 phosphorylation in endothelial cells. Mol. Biol. Cell. 2002;13:2881–2893. doi: 10.1091/mbc.e02-02-0103. PubMed DOI PMC