Epigenetic Regulation of miRNA Expression in Malignant Mesothelioma: miRNAs as Biomarkers of Early Diagnosis and Therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
31850200
PubMed Central
PMC6897284
DOI
10.3389/fonc.2019.01293
Knihovny.cz E-zdroje
- Klíčová slova
- early diagnosis, epi-miRNAs, epigenetic biomarkers, malignant mesothelioma, miR-126,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Asbestos exposure leads to epigenetic and epigenomic modifications that, in association with ROS-induced DNA damage, contribute to cancer onset. Few miRNAs epigenetically regulated in MM have been described in literature; miR-126, however, is one of them, and its expression is regulated by epigenetic mechanisms. Asbestos exposure induces early changes in the miRNAs, which are reversibly expressed as protective species, and their inability to reverse reflects the inability of the cells to restore the physiological miRNA levels despite the cessation of carcinogen exposure. Changes in miRNA expression, which results from genetic/epigenetic changes during tumor formation and evolution, can be detected in fluids and used as cancer biomarkers. This article has reviewed the epigenetic mechanisms involved in miRNA expression in MM, focusing on their role as biomarkers of early diagnosis and therapeutic effects.
Zobrazit více v PubMed
Lemen RA. Mesothelioma from asbestos exposures: epidemiologic patterns and impact in the United States. J Toxicol Environ Health B Crit Rev. (2016) 19:250–65. 10.1080/10937404.2016.1195323 PubMed DOI
Nielsen LS, Bælum J, Rasmussen J, Dahl S, Olsen KE, Albin M, et al. . Occupational asbestos exposure and lung cancer–a systematic review of the literature. Arch Environ Occup Health. (2014) 69:191–206. 10.1080/19338244.2013.863752 PubMed DOI
Kettunen E, Hernandez-Vargas H, Cros MP, Durand G, Le Calvez-Kelm F, Stuopelyte K, et al. . Asbestos-associated genome-wide DNA methylation changes in lung cancer. Int J Cancer. (2017) 141:2014–29. 10.1002/ijc.30897 PubMed DOI
Pascolo L, Gianoncelli A, Schneider G, Salomé M, Schneider M, Calligaro C, et al. . The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy. Sci Rep. (2013) 3:1123. 10.1038/srep01123 PubMed DOI PMC
Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, et al. . Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology. (2008) 135:2128–40. 10.1053/j.gastro.2008.07.027 PubMed DOI
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. . Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. (2009) 324:930–5. 10.1126/science.1170116 PubMed DOI PMC
Li W, Xu L. Epigenetic function of TET Family, 5-Methylcytosine, and 5-hydroxymethylcytosine in hematologic malignancies. Oncol Res Treat. (2019) 3:1–9. 10.1159/000498947 PubMed DOI
Izzotti A, Larghero P, Longobardi M, Cartiglia C, Camoirano A, Steele VE, et al. . Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung. Mutat Res. (2011) 717:9–16. 10.1016/j.mrfmmm.2010.12.008 PubMed DOI
Benedetti S, Nuvoli B, Catalani S, Galati R. Reactive oxygen species a double-edged sword for mesothelioma. Oncotarget. (2015) 6:16848–65. 10.18632/oncotarget.4253 PubMed DOI PMC
Jing H, Lin H. Sirtuins in epigenetic regulation. Chem Rev. (2015) 115:2350–75. 10.1021/cr500457h PubMed DOI PMC
Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. (2017) 18:90–101. 10.1038/nrm.2016.140 PubMed DOI PMC
Kuzmichev A, Jenuwein T, Tempst P, Reinberg D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell. (2004) 14:183–93. 10.1016/S1097-2765(04)00185-6 PubMed DOI
Trojer P, Zhang J, Yonezawa M, Schmidt A, Zheng H, Jenuwein T, et al. . Dynamic histone H1 Isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the jumonji domain-containing JMJD2/KDM4 proteins. J Biol Chem. (2009) 284:8395–405. 10.1074/jbc.M807818200 PubMed DOI PMC
Niu Y, DesMarais TL, Tong Z, Yao Y, Costa M. Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med. (2015) 82:22–8. 10.1016/j.freeradbiomed.2015.01.028 PubMed DOI PMC
Chen H, Ke Q, Kluz T, Yan Y, Costa M. Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol. (2006) 26:3728–37. 10.1128/MCB.26.10.3728-3737.2006 PubMed DOI PMC
Zhou X, Sun H, Ellen TP, Chen H, Costa M. Arsenite alters global histone H3 methylation. Carcinogenesis. (2008) 29:1831–6. 10.1093/carcin/bgn063 PubMed DOI PMC
Pinton G, Manente AG, Murer B, De Marino E, Mutti L, Moro L. PARP1 inhibition affects pleural mesothelioma cell viability and uncouples AKT/mTOR axis via SIRT1. J Cell Mol Med. (2013) 17:233–41. 10.1111/jcmm.12000 PubMed DOI PMC
Bhattacharjee P, Paul S, Bhattacharjee P. Risk of occupational exposure to asbestos, silicon and arsenic on pulmonary disorders: Understanding the genetic-epigenetic interplay and future prospects. Environ Res. (2016) 147:425–34. 10.1016/j.envres.2016.02.038 PubMed DOI
Tomasetti M, Amati M, Nocchi L, Saccucci F, Strafella E, Staffolani S, et al. . Asbestos exposure affects poly(ADP-ribose) polymerase-1 activity: role in asbestos-induced carcinogenesis. Mutagenesis. (2011) 26:585–91. 10.1093/mutage/ger020 PubMed DOI
Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. (2017) 18:610–21. 10.1038/nrm.2017.53 PubMed DOI PMC
Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. (2011) 25:1010–22. 10.1101/gad.2037511 PubMed DOI PMC
Chatterjee R, Vinson C. CpG methylation recruits sequence specific transcription factors essential for tissue specific gene expression. Biochim Biophys Acta. (2012) 1819:763–70. 10.1016/j.bbagrm.2012.02.014 PubMed DOI PMC
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. (2013) 38:23–38. 10.1038/npp.2012.112 PubMed DOI PMC
Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, et al. . DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. (2006) 38:1378–85. 10.1038/ng1909 PubMed DOI PMC
Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, et al. . Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. (2007) 39:457–66. 10.1038/ng1990 PubMed DOI
Xing X, Zhang B, Li D, Wang T. Comprehensive whole DNA methylome analysis by integrating MeDIP-seq and MRE-seq. Methods Mol Biol. (2018) 1708:209–46. 10.1007/978-1-4939-7481-8_12 PubMed DOI PMC
Bird A. The essentials of DNA methylation. Cell. (1992) 70:5–8. 10.1016/0092-8674(92)90526-I PubMed DOI
An J, Rao A, Ko M. TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp Mol Med. (2017) 49:e323. 10.1038/emm.2017.5 PubMed DOI PMC
Choudhury SR, Ordaz J, Lo CL, Damayanti NP, Zhou F, Irudayaraj J. From the cover: zinc oxide nanoparticles-induced reactive oxygen species promotes multimodal cyto- and epigenetic toxicity. Toxicol Sci. (2017) 156:261–74. 10.1093/toxsci/kfw252 PubMed DOI
Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. (2010) 28:1057–68. 10.1038/nbt.1685 PubMed DOI
Hitchins MP. Constitutional epimutation as a mechanism for cancer causality and heritability? Nat Rev Cancer. (2015) 15:625–34. 10.1038/nrc4001 PubMed DOI
Bird A. Genetic determinants of the epigenome in development and cancer. Swiss Med Wkly. (2017) 147:w14523. 10.4414/smw.2017.14523 PubMed DOI
Zealy RW, Wrenn SP, Davila S, Min KW, Yoon JH. microRNA-binding proteins: specificity and function. Wiley Interdiscip Rev RNA. (2017) 8:e1414. 10.1002/wrna.1414 PubMed DOI
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. (2019) 47(D1):D155–62. 10.1093/nar/gky1141 PubMed DOI PMC
Morales S, Monzo M, Navarro A. Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts. (2017) 8:203–12. 10.1515/bmc-2017-0024 PubMed DOI
Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. (2004) 101:2999–3004. 10.1073/pnas.0307323101 PubMed DOI PMC
Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. (2007) 302:1–12. 10.1016/j.ydbio.2006.08.028 PubMed DOI
Hinske LC, França GS, Torres HA, Ohara DT, Lopes-Ramos CM, Heyn J, et al. . miRIAD-integrating microRNA inter- and intragenic data. Database. (2014) 2014:bau099. 10.1093/database/bau099 PubMed DOI PMC
Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. (2005) 11:241–7. 10.1261/rna.7240905 PubMed DOI PMC
Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. (2007) 8:166. 10.1186/1471-2164-8-166 PubMed DOI PMC
Christensen BC, Houseman EA, Godleski JJ, Marsit CJ, Longacker JL, Roelofs CR, et al. . Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res. (2009) 69:227–34. 10.1158/0008-5472.CAN-08-2586 PubMed DOI PMC
Bosio M, Salvaterra E, Datturi F, Morbini P, Zorzetto M, Inghilleri S, et al. 5-hydroxymethylcytosine but not MTAP methylation status can stratify malignant pleural mesothelioma based on the lineage of origin. Multidiscip Respir Med. (2018) 13:27 10.1186/s40248-018-0137-4 PubMed DOI PMC
Hama R, Watanabe Y, Shinada K, Yamada Y, Ogata Y, Yoshida Y, et al. . Characterization of DNA hypermethylation in two cases of peritoneal mesothelioma. Tumour Biol. (2012) 33:2031–40. 10.1007/s13277-012-0462-8 PubMed DOI
Wang LM, Shi ZW, Wang JL, Lv Z, Du FB, Yang QB, et al. . Diagnostic accuracy of BRCA1-associated protein 1 in malignant mesothelioma: a meta-analysis. Oncotarget. (2017) 8:68863–72. 10.18632/oncotarget.20317 PubMed DOI PMC
Betti M, Aspesi A, Biasi A, Casalone E, Ferrante D, Ogliara P, et al. . CDKN2A and BAP1 germline mutations predispose to melanoma and mesothelioma. Cancer Lett. (2016) 378:120–30. 10.1016/j.canlet.2016.05.011 PubMed DOI
Joseph NM, Chen YY, Nasr A, Yeh I, Talevich E, Onodera C, et al. . Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X. Mod Pathol. (2017) 30:246–54. 10.1038/modpathol.2016.188 PubMed DOI PMC
Campagne A, Lee MK, Zielinski D, Michaud A, Le Corre S, Dingli F, et al. . BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nat Commun. (2019) 10:348. 10.1038/s41467-018-08255-x PubMed DOI PMC
Kukuyan AM, Sementino E, Kadariya Y, Menges CW, Cheung M, Tan Y, et al. . Inactivation of Bap1 cooperates with losses of Nf2 and Cdkn2a to drive the development of pleural malignant mesothelioma in conditional mouse models. Cancer Res. (2019) 79:4113–23. 10.1158/0008-5472.CAN-18-4093 PubMed DOI PMC
Ohar JA, Cheung M, Talarchek J, Howard SE, Howard TD, Hesdorffer M, et al. . Germline BAP1 mutational landscape of asbestos-exposed malignant mesothelioma patients with family history of cancer. Cancer Res. (2016) 76:206–15. 10.1158/0008-5472.CAN-15-0295 PubMed DOI PMC
Betti M, Casalone E, Ferrante D, Aspesi A, Morleo G, Biasi A, et al. . Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma. Cancer Lett. (2017) 405:38–45. 10.1016/j.canlet.2017.06.028 PubMed DOI
Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. . Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. (2011) 43:1022–5. 10.1038/ng.912 PubMed DOI PMC
Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H, et al. . High Incidence of Somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol. (2015) 10:565–76. 10.1097/JTO.0000000000000471 PubMed DOI PMC
Yu M, Liang H, Fu Z, Wang X, Liao Z, Zhou Y, et al. . BAP1 suppresses lung cancer progression and is inhibited by miR-31. Oncotarget. (2016) 7:13742–53. 10.18632/oncotarget.7328 PubMed DOI PMC
Ivanov SV, Goparaju CMV, Lopez P, Zavadil J, Toren-Haritan G, Rosenwald S, et al. . Pro-tumorigenic effects of miR-31 loss in mesothelioma. J Biol Chem. (2010) 285:22809–17. 10.1074/jbc.M110.100354 PubMed DOI PMC
Lin PC, Chiu YL, Banerjee S, Park K, Mosquera JM, Giannopoulou E, et al. . Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res. (2013) 73:1232–44. 10.1158/0008-5472.CAN-12-2968 PubMed DOI PMC
Wei J, Wang Z, Wang Z, Yang Y, Fu C, Zhu J, et al. . MicroRNA-31 function as a suppressor was regulated by epigenetic mechanisms in gastric cancer. Biomed Res Int. (2017) 2017:5348490. 10.1155/2017/5348490 PubMed DOI PMC
Matsumoto S, Nabeshima K, Hamasaki M, Shibuta T, Umemura T. Upregulation of microRNA-31 associates with a poor prognosis of malignant pleural mesothelioma with sarcomatoid component. Med Oncol. (2014) 31:303. 10.1007/s12032-014-0303-2 PubMed DOI
Lo Russo G, Tessari A, Capece M, Galli G, de Braud F, Garassino MC, et al. . MicroRNAs for the diagnosis and management of malignant pleural mesothelioma: a literature review. Front Oncol. (2018) 8:650. 10.3389/fonc.2018.00650 PubMed DOI PMC
Tanaka N, Toyooka S, Soh J, Tsukuda K, Shien K, Furukawa M, et al. . Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells. Oncol Rep. (2013) 29:2169–74. 10.3892/or.2013.2351 PubMed DOI
Kubo T, Toyooka S, Tsukuda K, Sakaguchi M, Fukazawa T, Soh J, et al. . Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma. Clin Cancer Res. (2011) 17:4965–74. 10.1158/1078-0432.CCR-10-3040 PubMed DOI
Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, et al. . Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids. (2014) 3:e194. 10.1038/mtna.2014.47 PubMed DOI PMC
Sato H, Soh J, Aoe K, Fujimoto N, Tanaka S, Namba K, et al. Droplet digital PCR as a novel system for the detection of microRNA-34b/c methylation in circulating DNA in malignant pleural mesothelioma. Int J Oncol. (2019) 54:2139–48. 10.3892/ijo.2019.4768 PubMed DOI
Cioce M, Ganci F, Canu V, Sacconi A, Mori F, Canino C, et al. . Protumorigenic effects of mir-145 loss in malignant pleural mesothelioma. Oncogene. (2014) 33:5319–31. 10.1038/onc.2013.476 PubMed DOI PMC
Ye D, Shen Z, Zhou S. Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment. Cancer Manag Res. (2019) 11:969–79. 10.2147/CMAR.S191696 PubMed DOI PMC
Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G. Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun. (2009) 379:726–31. 10.1016/j.bbrc.2008.12.098 PubMed DOI
Andersen M, Trapani D, Ravn J, Sørensen JB, Andersen CB, Grauslund M, et al. . Methylation-associated Silencing of microRNA-126 and its Host Gene EGFL7 in Malignant Pleural Mesothelioma. Anticancer Res. (2015) 35:6223–9. PubMed
Ebrahimi F, Gopalan V, Smith RA, Lam AK. miR-126 in human cancers: clinical roles and current perspectives. Exp Mol Pathol. (2014) 96:98–107. 10.1016/j.yexmp.2013.12.004 PubMed DOI
Nichol D, Stuhlmann H. EGFL7: a unique angiogenic signaling factor in vascular development and disease. Blood. (2012) 119:1345–52. 10.1182/blood-2011-10-322446 PubMed DOI PMC
Hong G, Kuek V, Shi J, Zhou L, Han X, He W, et al. . EGFL7: Master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. J Cell Physiol. (2018) 233:8526–37. 10.1002/jcp.26792 PubMed DOI
Nikolic I, Plate KH, Schmidt MHH. EGFL7 meets miRNA-126: an angiogenesis alliance. J Angiogenes Res. (2010) 2:9. 10.1186/2040-2384-2-9 PubMed DOI PMC
Lei H, Li H, Tian L, Li M, Xin Z, Zhang X, et al. . Icariside II ameliorates endothelial dysfunction by regulating the MAPK pathway via miR-126/SPRED1 in diabetic human cavernous endothelial cells. Drug Des Devel Ther. (2018) 12:1743–51. 10.2147/DDDT.S166734 PubMed DOI PMC
Yuan Y, Shen C, Zhao SL, Hu YJ, Song Y, Zhong QJ. MicroRNA-126 affects cell apoptosis, proliferation, cell cycle and modulates VEGF/TGF-β levels in pulmonary artery endothelial cells. Eur Rev Med Pharmacol Sci. (2019) 23:3058–69. 10.26355/eurrev_201904_17588 PubMed DOI
Chen H, Li L, Wang S, Lei Y, Ge Q, Lv N, et al. . Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget. (2014) 5:11873–85. 10.18632/oncotarget.2662 PubMed DOI PMC
Alhasan L. MiR-126 modulates angiogenesis in breast cancer by targeting VEGF-A –mRNA. Asian Pac J Cancer Prev. (2019) 20:193–7. 10.31557/APJCP.2019.20.1.193 PubMed DOI PMC
Song L, Li D, Gu Y, Wen ZM, Jie J, Zhao D, et al. . MicroRNA-126 targeting PIK3R2 inhibits NSCLC A549 cell proliferation, migration, and invasion by regulation of PTEN/PI3K/AKT pathway. Clin Lung Cancer. (2016) 17:e65–75. 10.1016/j.cllc.2016.03.012 PubMed DOI
Chen SR, Cai WP, Dai XJ, Guo AS, Chen HP, Lin GS, et al. . Research on miR-126 in glioma targeted regulation of PTEN/PI3K/Akt and MDM2-p53 pathways. Eur Rev Med Pharmacol Sci. (2019) 23:3461–70. 10.26355/eurrev_201904_17711 PubMed DOI
Hamada S, Satoh K, Fujibuchi W, Hirota M, Kanno A, Unno J, et al. . MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol Cancer Res. (2012) 10:3–10. 10.1158/1541-7786.MCR-11-0272 PubMed DOI
Wang CZ, Yuan P, Li Y. MiR-126 regulated breast cancer cell invasion by targeting ADAM9. Int J Clin Exp Pathol. (2015) 8:6547–53. PubMed PMC
Xiang LY, Ou HH, Liu XC, Chen ZJ, Li XH, Huang Y, et al. . Loss of tumor suppressor miR-126 contributes to the development of hepatitis B virus-related hepatocellular carcinoma metastasis through the upregulation of ADAM9. Tumour Biol. (2017) 39:1010428317709128. 10.1177/1010428317709128 PubMed DOI
Santarelli L, Strafella E, Staffolani S, Amati M, Emanuelli M, Sartini D, et al. . Association of MiR-126 with soluble mesothelin-related peptides, a marker for malignant mesothelioma. PLoS ONE. (2011) 6:e18232. 10.1371/journal.pone.0018232 PubMed DOI PMC
Tomasetti M, Staffolani S, Nocchi L, Neuzil J, Strafella E, Manzella N, et al. . Clinical significance of circulating miR-126 quantification in malignant mesothelioma patients. Clin Biochem. (2012) 45:575–81. 10.1016/j.clinbiochem.2012.02.009 PubMed DOI
Andersen M, Grauslund M, Ravn J, Sørensen JB, Andersen CB, Santoni-Rugiu E. Diagnostic potential of miR-126, miR-143, miR-145, and miR-652 in malignant pleural mesothelioma. J Mol Diagn. (2014) 16:418–30. 10.1016/j.jmoldx.2014.03.002 PubMed DOI
Santarelli L, Staffolani S, Strafella E, Nocchi L, Manzella N, Grossi P, et al. . Combined circulating epigenetic markers to improve mesothelin performance in the diagnosis of malignant mesothelioma. Lung Cancer. (2015) 90:457–64. 10.1016/j.lungcan.2015.09.021 PubMed DOI
Micolucci L, Akhtar MM, Olivieri F, Rippo MR, Procopio AD. Diagnostic value of microRNAs in asbestos exposure and malignant mesothelioma: systematic review and qualitative meta-analysis. Oncotarget. (2016) 7:58606–37. 10.18632/oncotarget.9686 PubMed DOI PMC
De Santi C, Melaiu O, Bonotti A, Cascione L, Di Leva G, Foddis R, et al. . Deregulation of miRNAs in malignant pleural mesothelioma is associated with prognosis and suggests an alteration of cell metabolism. Sci Rep. (2017) 7:3140. 10.1038/s41598-017-02694-0 PubMed DOI PMC
Santarelli L, Gaetani S, Monaco F, Bracci M, Valentino M, Amati M, et al. . Four-miRNA signature to identify asbestos-related lung malignancies. Cancer Epidemiol. Biomarkers Prev. (2019) 28:119–26. 10.1158/1055-9965.EPI-18-0453 PubMed DOI
Jiang R, Zhang C, Liu G, Gu R, Wu H. MicroRNA-126 inhibits proliferation, migration, invasion, and EMT in osteosarcoma by targeting ZEB1. J Cell Biochem. (2017) 118:3765–74. 10.1002/jcb.26024 PubMed DOI
Kong R, Ma Y, Feng J, Li S, Zhang W, Jiang J, et al. . The crucial role of miR-126 on suppressing progression of esophageal cancer by targeting VEGF-A. Cell Mol Biol Lett. (2016) 21:3. 10.1186/s11658-016-0004-2 PubMed DOI PMC
Liu R, Zhang YS, Zhang S, Cheng ZM, Yu JL, Zhou S, et al. . MiR-126–3p suppresses the growth, migration and invasion of NSCLC via targeting CCR1. Eur Rev Med Pharmacol Sci. (2019) 23:679–89. 10.26355/eurrev_201901_16881 PubMed DOI
Tomasetti M, Nocchi L, Staffolani S, Manzella N, Amati M, Goodwin J, et al. . MicroRNA-126 suppresses mesothelioma malignancy by targeting IRS1 and interfering with the mitochondrial function. Antioxid Redox Signal. (2014) 21:2109–25. 10.1089/ars.2013.5215 PubMed DOI PMC
Tomasetti M, Monaco F, Manzella N, Rohlena J, Rohlenova K, Staffolani S, et al. . MicroRNA-126 induces autophagy by altering cell metabolism in malignant mesothelioma. Oncotarget. (2016) 7:36338–52. 10.18632/oncotarget.8916 PubMed DOI PMC
Zhang Y, Wang X, Xu B, Wang B, Wang Z, Liang Y, et al. . (2013). Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol Rep. 30:1976–84. 10.3892/or.2013.2633 PubMed DOI
Moradi Sarabi M, Zahedi SA, Pajouhi N, Khosravi P, Bagheri S, Ahmadvand H, et al. . The effects of dietary polyunsaturated fatty acids on miR-126 promoter DNA methylation status and VEGF protein expression in the colorectal cancer cells. Genes Nutr. (2018) 13:32. 10.1186/s12263-018-0623-5 PubMed DOI PMC
Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y, et al. . miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol. (2013) 15:284–94. 10.1038/ncb2690 PubMed DOI PMC
Liu F, Zhang H, Lu S, Wu Z, Zhou L, Cheng Z, et al. . Quantitative assessment of gene promoter methylation in non-small cell lung cancer using methylation-sensitive high-resolution melting. Oncol Lett. (2018) 15:7639–48. 10.3892/ol.2018.8321 PubMed DOI PMC
Du J, Zhang L. Integrated analysis of DNA methylation and microRNA regulation of the lung adenocarcinoma transcriptome. Oncol Rep. (2015) 34:585–94. 10.3892/or.2015.4023 PubMed DOI PMC
Liu R, Gu J, Jiang P, Zheng Y, Liu X, Jiang X, et al. . DNMT1-microRNA126 epigenetic circuit contributes to esophageal squamous cell carcinoma growth via ADAM9-EGFR-AKT signaling. Clin Cancer Res. (2015) 21:854–63. 10.1158/1078-0432.CCR-14-1740 PubMed DOI
Cui H, Mu Y, Yu L, Xi YG, Matthiesen R, Su X, et al. Methylation of the miR-126 gene associated with glioma progression. Fam Cancer. (2016) 15:317–24. 10.1007/s10689-015-9846-4 PubMed DOI
Zampieri M, Guastafierro T, Calabrese R, Ciccarone F, Bacalini MG, Reale A, et al. . ADP-ribose polymers localized on Ctcf-Parp1-Dnmt1 complex prevent methylation of Ctcf target sites. Biochem J. (2012) 441:645–52. 10.1042/BJ20111417 PubMed DOI PMC
Zampieri M, Passananti C, Calabrese R, Perilli M, Corbi N, De Cave F, et al. . Parp1 localizes within the Dnmt1 promoter and protects its unmethylated state by its enzymatic activity. PLoS ONE. (2009) 4:e4717. 10.1371/journal.pone.0004717 PubMed DOI PMC
Clements EG, Mohammad HP, Leadem BR, Easwaran H, Cai Y, Van Neste L, et al. . DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modifying enzymes. Nucleic Acids Res. (2012) 40:4334–46. 10.1093/nar/gks031 PubMed DOI PMC
De Vos M, El Ramy R, Quénet D, Wolf P, Spada F, Magroun N, et al. . Poly(ADP-ribose) polymerase 1 (PARP1) associates with E3 ubiquitin-protein ligase UHRF1 and modulates UHRF1 biological functions. J Biol Chem. (2014) 289:16223–38. 10.1074/jbc.M113.527424 PubMed DOI PMC
Wang X, Wang S, Liu W, Wang T, Wang J, Gao X, et al. . Epigenetic upregulation of miR-126 induced by heat stress contributes to apoptosis of rat cardiomyocytes by promoting Tomm40 transcription. J Mol Cell Cardiol. (2019) 129:39–48. 10.1016/j.yjmcc.2018.10.005 PubMed DOI
Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta. (2010) 1799:694–701. 10.1016/j.bbagrm.2010.05.005 PubMed DOI
Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N, et al. . Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology. (2009) 9:293–301. 10.1159/000186051 PubMed DOI PMC
Pass HI, Goparaju C, Ivanov S, Donington J, Carbone M, Hoshen M, et al. . hsa-miR-29c* is linked to the prognosis of malignant pleural mesothelioma. Cancer Res. (2010) 70:1916–24. 10.1158/0008-5472.CAN-09-3993 PubMed DOI PMC
Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. . MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. (2007) 104:15805–10. 10.1073/pnas.0707628104 PubMed DOI PMC
Alamoudi AA, Alnoury A, Gad H. miRNA in tumour metabolism and why could it be the preferred pathway for energy reprograming. Brief Funct Genomics. (2018) 17:157–69. 10.1093/bfgp/elx023 PubMed DOI
Tomasetti M, Amati M, Santarelli L, Neuzil J. MicroRNA in metabolic re-programming and their role in tumorigenesis. Int J Mol Sci. (2016) 17:E754. 10.3390/ijms17050754 PubMed DOI PMC
Zhao X, Zhu D, Lu C, Yan D, Li L, Chen Z. MicroRNA-126 inhibits the migration and invasion of endometrial cancer cells by targeting insulin receptor substrate 1. Oncol Lett. (2016) 11:1207–12. 10.3892/ol.2015.4001 PubMed DOI PMC
Hekmatimoghaddam S, Dehghani Firoozabadi A, Zare-Khormizi MR, Pourrajab F. Sirt1 and Parp1 as epigenome safeguards and microRNAs as SASP-associated signals, in cellular senescence and aging. Ageing Res Rev. (2017) 40:120–41. 10.1016/j.arr.2017.10.001 PubMed DOI
Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, et al. . Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science. (2010) 329:1201–5. 10.1126/science.1191241 PubMed DOI PMC
Kirschner MB, Cheng YY, Armstrong NJ, Lin RC, Kao SC, Linton A, et al. . MiR-score: a novel 6-microRNA signature that predicts survival outcomes in patients with malignant pleural mesothelioma. Mol Oncol. (2015) 9:715–26. 10.1016/j.molonc.2014.11.007 PubMed DOI PMC
Chen Z, Gaudino G, Pass HI, Carbone M, Yang H. Diagnostic and prognostic biomarkers for malignant mesothelioma: an update. Transl Lung Cancer Res. (2017) 6:259–69. 10.21037/tlcr.2017.05.06 PubMed DOI PMC
Mozzoni P, Ampollini L, Goldoni M, Alinovi R, Tiseo M, Gnetti L, et al. . MicroRNA expression in malignant pleural mesothelioma and asbestosis: a pilot study. Dis Markers. (2017) 2017:9645940. 10.1155/2017/9645940 PubMed DOI PMC
Schelch K, Kirschner MB, Williams M, Cheng YY, van Zandwijk N, Grusch M, et al. . A link between the fibroblast growth factor axis and the miR-16 family reveals potential new treatment combinations in mesothelioma. Mol Oncol. (2018) 12:58–73. 10.1002/1878-0261.12150 PubMed DOI PMC
Weber DG, Johnen G, Bryk O, Jöckel KH, Brüning T. Identification of miRNA-103 in the cellular fraction of human peripheral blood as a potential biomarker for malignant mesothelioma–a pilot study. PLoS ONE. (2012) 7:e30221 10.1371/journal.pone.0030221 PubMed DOI PMC
Busacca S, Germano S, De Cecco L, Rinaldi M, Comoglio F, Favero F, et al. . MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. Am J Respir Cell Mol Biol. (2010) 42:312–19. 10.1165/rcmb.2009-0060OC PubMed DOI
Birnie KA, Yip YY, Ng DC, Kirschner MB, Reid G, Prêle CM, et al. . Loss of mir-223 and jnk signaling contribute to elevated stathmin in malignant pleuralmesothelioma. Mol Cancer Res. (2015) 13:1106–18. 10.1158/1541-7786.MCR-14-0442 PubMed DOI
Kirschner MB, Cheng YY, Badrian B, Kao SC, Creaney J, Edelman JJ, et al. . Increased circulating miR-625–3p: a potential biomarker for patients with malignant pleural mesothelioma. J Thorac Oncol. (2012) 7:1184–91. 10.1097/JTO.0b013e3182572e83 PubMed DOI
Cheng YY, Wright CM, Kirschner MB, Williams M, Sarun KH, Sytnyk V, et al. . KCa1.1, a calcium-activated potassium channel subunit alpha 1, is targeted by miR-17–5p and modulates cell migration in malignant pleural mesothelioma. Mol Cancer. (2016) 15:44. 10.1186/s12943-016-0529-z PubMed DOI PMC
Williams M, Kirschner MB, Cheng YY, Hanh J, Weiss J, Mugridge N, et al. . miR-193a- 3p is a potential tumor suppressor in malignant pleural mesothelioma. Oncotarget. (2015) 6:23480–95. 10.18632/oncotarget.4346 PubMed DOI PMC
Mairinger FD, Werner R, Flom E, Schmeller J, Borchert S, Wessolly M, et al. . miRNA regulation is important for DNA damage repair and recognition in malignant pleural mesothelioma. Virchows Arch. (2017) 470:627–37. 10.1007/s00428-017-2133-z PubMed DOI
De Santi C, Vencken S, Blake J, Haase B, Benes V, Gemignani F, et al. . Identification of MiR- 21–5p as a functional regulator of mesothelin expression using MicroRNA capture affinity coupled with next generation sequencing. PLoS ONE. (2017) 12:e0170999. 10.1371/journal.pone.0170999 PubMed DOI PMC
Garofalo M, Quintavalle C, Romano G, Croce CM, Condorelli G. miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med. (2012) 12:27–33. 10.2174/156652412798376170 PubMed DOI PMC
Nymark P, Guled M, Borze I, Faisal A, Lahti L, Salmenkivi K, et al. . Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos- and histology-related changes in lung cancer. Genes Chromosomes Cancer. (2011) 50:585–97. 10.1002/gcc.20880 PubMed DOI
Lovat F, Fassan M, Sacchi D, Ranganathan P, Palamarchuk A, Bill M, et al. . Knockout of both miR-15/16 loci induces acute myeloid leukemia. Proc Natl Acad Sci USA. (2018) 115:13069–74. 10.1073/pnas.1814980115 PubMed DOI PMC
Mei Q, Li X, Zhang K, Wu Z, Li X, Meng Y, et al. . Genetic and methylation-induced loss of miR-181a2/181b2 within chr9q33.3 facilitates tumor growth of cervical cancer through the PIK3R3/Akt/FoxO signaling pathway. Clin Cancer Res. (2017) 23:575–86. 10.1158/1078-0432.CCR-16-0303 PubMed DOI
Weber DG, Brik A, Casjens S, Burek K, Lehnert M, Pesch B, et al. . Are circulating microRNAs suitable for the early detection of malignant mesothelioma? Results from a nested case-control study. BMC Res Notes. (2019) 12:77. 10.1186/s13104-019-4113-7 PubMed DOI PMC
Cristaudo A, Bonotti A, Guglielmi G, Fallahi P, Foddis R. Serum mesothelin and other biomarkers: what have we learned in the last decade? J Thorac Dis. (2018) 10(Suppl 2): S353–9. 10.21037/jtd.2017.10.132 PubMed DOI PMC
Tomasetti M, Santarelli L. Biomarkers for early detection of malignant mesothelioma: diagnostic and therapeutic application. Cancers. (2010) 2:523–48. 10.3390/cancers2020523 PubMed DOI PMC
Hollevoet K, Reitsma JB, Creaney J, Grigoriu BD, Robinson BW, Scherpereel A, et al. . Serum mesothelin for diagnosing malignant pleural mesothelioma: an individual patient data meta-analysis. J Clin Oncol. (2012) 30:1541–9. 10.1200/JCO.2011.39.6671 PubMed DOI PMC
Ban CJ, Shi HZ, Zhang YH. Improvement of malignant pleural mesothelioma prognosis: early diagnosis and multimodality treatment. Chin Med J. (2017) 130:1–3. 10.4103/0366-6999.196585 PubMed DOI PMC
Witwer KW. Circulating microRNA biomarker studies: pitfalls and potential solutions. Clin Chem. (2015) 61:56–63. 10.1373/clinchem.2014.221341 PubMed DOI
Amr KS, Abdelmawgoud H, Ali ZY, Shehata S, Raslan HM. Potential value of circulating microRNA-126 and microRNA-210 as biomarkers for type 2 diabetes with coronary artery disease. Br J Biomed Sci. (2018) 75:82–7. 10.1080/09674845.2017.1402404 PubMed DOI
Wu H, Xiao Z, Wang K, Liu W, Hao Q. MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1. Biochem Biophys Res Commun. (2013) 441:693–700. 10.1016/j.bbrc.2013.10.053 PubMed DOI
van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. . Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. (2017) 18:1386–96. 10.1016/S1470-2045(17)30621-6 PubMed DOI