Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures

. 2019 Dec ; 576 (7787) : 423-428. [epub] 20191218

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31853081

Grantová podpora
P 28185 Austrian Science Fund FWF - Austria
P 30960 Austrian Science Fund FWF - Austria

Odkazy

PubMed 31853081
DOI 10.1038/s41586-019-1826-7
PII: 10.1038/s41586-019-1826-7
Knihovny.cz E-zdroje

Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications1-8. The edge states are hosted by a magnetic energy gap at the Dirac point2, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC (ref. 8). Here we use low-temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is five times larger than theoretically predicted9. Using multiscale analysis we show that this enhancement is due to a remarkable structure modification induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap10. Mn-doped Bi2Se3 (ref. 11) and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin-orbit interaction by comparison with Mn-doped Bi2Te3. Our findings provide insights that will be crucial in pushing lossless transport in topological insulators towards room-temperature applications.

Komentář v

PubMed

Zobrazit více v PubMed

Onoda, M. & Nagaosa, N. Quantized anomalous Hall effect in two-dimensional ferromagnets: quantum Hall effect in metals. Phys. Rev. Lett. 90, 206601 (2003).

Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect toward the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

Bestwick, A. J. et al. Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015).

Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

Grauer, S., Schreyeck, S., Winnerlein, M., Brunner, K., Gould, C. & Molenkamp, L. W. Coincidence of superparamagnetism and perfect quantization in the quantum anomalous Hall state. Phys. Rev. B 92, 201304(R) (2015).

Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

Henk, J. et al. Topological character and magnetism of the Dirac state in Mn-doped Bi

Otrokov, M. M. et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater. 4, 025082 (2017).

Hagmann, J. A. et al. Molecular beam growth and structure of self-assembled Bi

Xu, S.-Y. et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012).

Zhang, D. et al. Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys. Rev. B 86, 205127 (2012).

Sánchez-Barriga, J. et al. Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi PubMed PMC

Scholz, M. R. et al. Tolerance of topological surface states towards magnetic moments: Fe on Bi PubMed PMC

Ye, M. et al. Quasiparticle interference on the surface of Bi

Sessi, P. et al. Dual nature of magnetic dopants and competing trends in topological insulators. Nat. Commun. 7, 12027 (2016). PubMed PMC

Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Cr

Chang, C.-Z. et al. Chemical-potential-dependent gap opening at the Dirac surface states of Bi PubMed PMC

Růžička, J. et al. Structural and electronic properties of manganese-doped Bi

Rosenberg, G. & Franz, M. Surface magnetic ordering in topological insulators with bulk magnetic dopants. Phys. Rev. B 85, 195119 (2012).

Hor, Y. S. et al. Development of ferromagnetism in the doped topological insulator Bi

Kharitonov, M. Interaction-enhanced magnetically ordered insulating state at the edge of a two-dimensional topological insulator. Phys. Rev. B 86, 165121 (2012).

Lee, D. S. et al. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi

Abdalla, L. B., Seixas, L., Schmidt, T. M., Miwa, R. H. & Fazzio, A. Topological insulator Bi

Hirahara, T. et al. Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer. Nano Lett. 17, 3493–3500 (2017).

Lee, J. S. et al. Ferromagnetism and spin-dependent transport in n-type Mn-doped bismuth telluride thin films. Phys. Rev. B 89, 174425 (2014).

Black-Schaffer, A. M. & Balatsky, A. V. Strong potential impurities on the surface of a topological insulator. Phys. Rev. B 85, 121103(R) (2012).

Sánchez-Barriga, J. et al. Anomalous behavior of the electronic structure of (Bi

Mogi, M., Kawamura, M., Tsukazaki, A., Yoshimi, R., Takahashi, K. S., Kawasaki, M. & Tokura, Y. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator., Sci. Adv. 10, eaao1669 (2017).

Xiao, D. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

He, Q. L., et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure. Science 357, 294–299 (2017).

Kim, B., Andrews, A. B., Erskine, J. L., Kim, K. J. & Harmon, B. N. Temperature dependent conduction-band exchange splitting in ferromagnetic hcp gadolinium: theoretical predictions and photoemission experiments. Phys. Rev. Lett. 68, 1931–1934 (1992).

Burnett, G. C., Monroe, T. J. & Dunning, F. B. High-efficiency retarding-potential Mott polarization analyzer. Rev. Sci. Instrum. 65, 1893–1896 (1994).

Passek, F. & Donath, M. Spin-split image-potential-induced surface state on Ni(111). Phys. Rev. Lett. 69, 1101–1104 (1992).

Mitchell, D. HRTEM Filter. Austrian Centre for Electron Microscopy and Nanoanalysis https://dm-script.tugraz.at/dm/source_codes/181 (2007).

Rogalev, A., Wilhelm, F., Goulon, J. & Goulon-Ginet, C. C. in Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources vol. 151 (eds Beaurepaire, E., Bulou, H., Joly, L. & Scheurer, F.) 289–314 (Springer, 2013).

Bunău, O. & Joly, Y. Self-consistent aspects of x-ray absorption calculations. J. Phys. Condens. Matter 21, 345501 (2009).

Steiner, H. et al. Structure and composition of bismuth telluride topological insulators grown by molecular beam epitaxy. J. Appl. Cryst. 47, 1889–1900 (2014).

Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. Wien2k, an augmented plane wave plus local orbital program for calculating the crystal properties. http://www.wien2k.at (2001).

Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

Khan, S. A., Blaha, P., Ebert, H., Minár, J. & Sipr, O. Magnetocrystalline anisotropy of FePt: a detailed view. Phys. Rev. B 94, 144436 (2016).

MacDonald, A. H. & Vosko, S. H. A relativistic density functional formalism. J. Phys. C Solid State Phys. 12, 2977–2990 (1979).

Ebert, H., Ködderitzsch, D. & Minár, J. Calculating condensed matter properties using the KKR-Green’s function method—recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).

Ebert, H. The Munich SPRKKR package, version 7. http://olymp.cup.uni-muenchen.de (2012).

Mackintosh, R. & Andersen, O. K. in Electrons at the Fermi surface Vol. 3 (ed. Springford, M.) 149–222 (Cambridge Univ. Press, 1980).

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace