Epigenetic Regulation in Etiology of Type 1 Diabetes Mellitus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
PROGRES Q36 Metabolism
Univerzita Karlova v Praze
260387/SVV/2019 Molecular, endocrine and genetic aspects of diabetes mellitus etiology
Univerzita Karlova v Praze
PubMed
31861649
PubMed Central
PMC6981658
DOI
10.3390/ijms21010036
PII: ijms21010036
Knihovny.cz E-zdroje
- Klíčová slova
- HLA class II, epigenetic modifications, insulin, type 1 diabetes,
- MeSH
- diabetes mellitus 1. typu genetika MeSH
- epigeneze genetická * MeSH
- genetická predispozice k nemoci MeSH
- genové regulační sítě * MeSH
- lidé MeSH
- regulace genové exprese MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Type 1 diabetes mellitus (T1DM) is caused by an autoimmune destruction of the pancreatic β-cells, a process in which autoreactive T cells play a pivotal role, and it is characterized by islet autoantibodies. Consequent hyperglycemia is requiring lifelong insulin replacement therapy. T1DM is caused by the interaction of multiple environmental and genetic factors. The integrations of environments and genes occur via epigenetic regulations of the genome, which allow adaptation of organism to changing life conditions by alternation of gene expression. T1DM has increased several-fold over the past half century. Such a short time indicates involvement of environment factors and excludes genetic changes. This review summarizes the most current knowledge of epigenetic changes in that process leading to autoimmune diabetes mellitus.
Zobrazit více v PubMed
Sharp S.A., Weedon M.N., Hagopian W.A., Oram R.A. Clinical and research uses of genetic risk scores in type 1 diabetes. Curr. Opin. Genet. Dev. 2018;50:96–102. doi: 10.1016/j.gde.2018.03.009. PubMed DOI PMC
Nyaga D.M., Vickers M.H., Jefferies C., Perry J.K., O’Sullivan J.M. The genetic architecture of type 1 diabetes mellitus. Mol. Cell. Endocrinol. 2018;477:70–80. doi: 10.1016/j.mce.2018.06.002. PubMed DOI
Abbas A.K., Lichtman A.H., Pillai S. Cellular and Molecular Immunology. 7th ed. Elsevier Saunders; Philadelphia, PA, USA: 2012.
Cerna M. Genetics of autoimmune diabetes mellitus. Wien. Med. Wochenschr. 2008;158:2–12. doi: 10.1007/s10354-007-0448-0. PubMed DOI
Rewers M., Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet. 2016;387:2340–2348. doi: 10.1016/S0140-6736(16)30507-4. PubMed DOI PMC
Paun A., Yau C., Danska J.S. The influence of the microbiome on type 1 diabetes. J. Immunol. 2017;198:590–595. doi: 10.4049/jimmunol.1601519. PubMed DOI
Bach J.F. The hygiene hypothesis in autoimmunity: The role of pathogens and commensals. Nat. Rev. Immunol. 2018;18:105–120. doi: 10.1038/nri.2017.111. PubMed DOI
Sharif K., Watad A., Coplan L., Amital H., Shoenfeld Y., Afek A. Psychological stress and type 1 diabetes mellitus: What is the link? Expert Rev. Clin. Immunol. 2018;14:1081–1088. doi: 10.1080/1744666X.2018.1538787. PubMed DOI
Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016;17:487–500. doi: 10.1038/nrg.2016.59. PubMed DOI
Rose N.R., Klose R.J. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim. Biophys. Acta. 2014;1839:1362–1372. doi: 10.1016/j.bbagrm.2014.02.007. PubMed DOI PMC
Garcia-Gonzalez E., Escamilla-Del-Arenal M., Arzate-Mejia R., Recillas-Targa F. Chromatin remodeling effects on enhancer activity. Cell. Mol. Life Sci. 2016;73:2897–2910. doi: 10.1007/s00018-016-2184-3. PubMed DOI PMC
Ruiz-Hernandez A., Kuo C.-C., Rentero-Garrido P., Tang W.-Y., Redon J., Ordovas J.M., Navas-Acien A., Tellez-Plaza M. Environmental chemicals and DNA methylation in adults: A systematic review of the epidemiologic evidence. Clin. Epigenet. 2015;7:55. doi: 10.1186/s13148-015-0055-7. PubMed DOI PMC
Gaine M.E., Chatterjee S., Abel T. Sleep deprivation and the epigenome. Front. Neural Circuits. 2018;12:14. doi: 10.3389/fncir.2018.00014. PubMed DOI PMC
Yu G., Wu Q., Gao Y., Chen M., Yang M. The epigenetics of aging in invertebrates. Int. J. Mol. Sci. 2019;20:4535. doi: 10.3390/ijms20184535. PubMed DOI PMC
Sapienza C., Issa J.P. Diet, nutrition, and cancer epigenetics. Annu. Rev. Nutr. 2016;36:665–681. doi: 10.1146/annurev-nutr-121415-112634. PubMed DOI
Picascia A., Grimaldi V., Pignalosa O., De Pascale M.R., Schiano C., Napoli C. Epigenetic control of autoimmune diseases: From bench to bedside. Clin. Immunol. 2015;157:1–15. doi: 10.1016/j.clim.2014.12.013. PubMed DOI
Taudt A., Colomé-Tatché M., Johannes F. Genetic sources of population epigenomic variation. Nat. Rev. Genet. 2016;17:319–332. doi: 10.1038/nrg.2016.45. PubMed DOI
Surace A.E.A., Hedrich C.M. The role of epigenetics in autoimmune/inflammatory disease. Front. Immunol. 2019;10:1525. doi: 10.3389/fimmu.2019.01525. PubMed DOI PMC
Klose R.J., Bird A.P. Genomic DNA methylation: The mark and its mediators. Trends Biochem. Sci. 2006;31:89–97. doi: 10.1016/j.tibs.2005.12.008. PubMed DOI
Weber M., Hellmann I., Stadler M.B., Ramos L., Pääbo S., Rebhan M., Schübeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 2007;39:457–466. doi: 10.1038/ng1990. PubMed DOI
Shen H., Qiu C., Li J., Tian Q., Deng H.-W. Characterization of the DNA methylome and its interindividual variation in human peripheral blood monocytes. Epigenomics. 2013;5:255–269. doi: 10.2217/epi.13.18. PubMed DOI PMC
Majumder P., Boss J.M. DNA methylation dysregulates and silences the HLA-DQ locus by altering chromatin architecture. Genes Immun. 2011;12:291–299. doi: 10.1038/gene.2010.77. PubMed DOI PMC
Zajacová M. Ph.D. Thesis. Charles University, Third Faculty of Medicine; Vinohrady, Czech Republic: 2018. Regulation of HLA Class II Genes Expression.
Xiang Z., Yang Y., Chang C., Lu Q. The epigenetic mechanism for discordance of autoimmunity in monozygotic twins. J. Autoimmun. 2017;83:43–50. doi: 10.1016/j.jaut.2017.04.003. PubMed DOI
Rakyan V.K., Beyan H., Down T.A., Hawa M.I., Maslau S., Aden D., Daunay A., Busato F., Mein C.A., Manfras B., et al. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet. 2011;7:1002300. doi: 10.1371/journal.pgen.1002300. PubMed DOI PMC
Stefan M., Zhang W., Concepcion E., Yi Z., Tomer Y. DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J. Autoimmun. 2014;50:33–37. doi: 10.1016/j.jaut.2013.10.001. PubMed DOI PMC
Elboudwarej E., Cole M., Briggs F.B.S., Fouts A., Fain P.R., Quach H., Quach D., Sinclair E., Criswell L.A., Lane J.A., et al. Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. J. Autoimmun. 2016;68:23–29. doi: 10.1016/j.jaut.2015.12.003. PubMed DOI PMC
Paul D., Teschendorff A.E., Dang M.A., Lowe R., Hawa M.I., Ecker S., Beyan H., Cunningham S., Fouts A.R., Ramelius A., et al. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nat. Commun. 2016;7:13555. doi: 10.1038/ncomms13555. PubMed DOI PMC
Disanto G., Vcelakova J., Pakpoor J., Elangovan R.I., Sumnik Z., Ulmannova T., Ebers G.C., Ramagopalan S.V., Stechová K. DNA methylation in monozygotic quadruplets affected by type 1 diabetes. Diabetologia. 2013;56:2093–2095. doi: 10.1007/s00125-013-2972-3. PubMed DOI
Zajacova M., Kotrbova-Kozak A., Cepek P., Cerna M. Differences in promoter DNA methylation and mRNA expression of individual alleles of the HLA class II DQA1 gene. Immunol. Lett. 2015;167:147–154. doi: 10.1016/j.imlet.2015.08.006. PubMed DOI
Cepek P., Zajacova M., Kotrbova-Kozak A., Silhova E., Cerna M. DNA methylation and mRNA expression of HLA-DQA1 alleles in type 1 diabetes mellitus. Immunology. 2016;148:150–159. doi: 10.1111/imm.12593. PubMed DOI PMC
Li Y., Zhao M., Hou C., Liang G., Yang L., Tan Y., Wang Z., Yin H., Zhou Z., Lu Q. Abnormal DNA methylation in CD4+ T cells from people with latent autoimmune diabetes in adults. Diabetes Res. Clin. Pract. 2011;94:242–248. doi: 10.1016/j.diabres.2011.07.027. PubMed DOI
Redondo M.J., Steck A.K., Pugliese A. Genetics of type 1 diabetes. Pediatr. Diabetes. 2018;19:346–353. doi: 10.1111/pedi.12597. PubMed DOI PMC
Fradin D., Le Fur S., Mille C., Naoui N., Groves C., Zelenika D., McCarthy M.I., Lathrop M., Bougnères P. Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes. PLoS ONE. 2012;7:0036278. doi: 10.1371/journal.pone.0036278. PubMed DOI PMC
Rui J., Deng S., Lebastchi J., Clark P.L., Usmani-Brown S., Herold K.C. Methylation of insulin DNA in response to proinflammatory cytokines during the progression of autoimmune diabetes in NOD mice. Diabetologia. 2016;59:1021–1029. doi: 10.1007/s00125-016-3897-4. PubMed DOI PMC
Husseiny M.I., Kuroda A., Kaye A.N., Nair I., Kandeel F., Ferreri K. Development of a quantitative methylation-specific polymerase chain reaction method for monitoring beta cell death in type 1 diabetes. PLoS ONE. 2012;7:0047942. doi: 10.1371/journal.pone.0047942. PubMed DOI PMC
Akirav E.M., Lebastchi J., Galvan E.M., Henegariu O., Akirav M., Ablamunits V., Lizardi P.M., Herold K.C. Detection of beta cell death in diabetes using differentially methylated circulating DNA. Proc. Natl. Acad. Sci. USA. 2011;108:19018–19023. doi: 10.1073/pnas.1111008108. PubMed DOI PMC
Fisher M.M., Watkins R.A., Blum J., Evans-Molina C., Chalasani N., DiMeglio L.A., Mather K.J., Tersey S.A., Mirmira R.G. Elevations in circulating methylated and unmethylated preproinsulin DNA in new-onset type 1 diabetes. Diabetes. 2015;64:3867–3872. doi: 10.2337/db15-0430. PubMed DOI PMC
Olsen J.A., Kenna L.A., Spelios M.G., Hessner M.J., Akirav E.M. Circulating differentially methylated amylin DNA as a biomarker of β-cell loss in type 1 diabetes. PLoS ONE. 2016;11:0152662. doi: 10.1371/journal.pone.0152662. PubMed DOI PMC
Belot M.P., Fradin D., Mai N., Le Fur S., Zélénika D., Kerr-Conte J., Pattou F., Lucas B., Bougnères P. CpG methylation changes within the IL2RA promoter in type 1 diabetes of childhood onset. PLoS ONE. 2013;8:e68093. doi: 10.1371/journal.pone.0068093. PubMed DOI PMC
Chen B., Sun L., Zhang X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J. Autoimmun. 2017;83:31–42. doi: 10.1016/j.jaut.2017.03.009. PubMed DOI
Knip M., Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 2016;12:154–167. doi: 10.1038/nrendo.2015.218. PubMed DOI
Davis-Richardson A.G., Triplett E.W. A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes. Diabetologia. 2015;58:1386–1393. doi: 10.1007/s00125-015-3614-8. PubMed DOI PMC
Gowher H., Jeltsch A. Mammalian DNA methyltransferases: New discoveries and open questions. Biochem. Soc. Trans. 2018;46:1191–1202. doi: 10.1042/BST20170574. PubMed DOI PMC
Suzuki K., Luo Y. Histone acetylation and the regulation of major histocompatibility class II gene expression. Adv. Protein Chem. Struct. Biol. 2017;106:71–111. PubMed
Miao F., Smith D.D., Zhang L., Min A., Feng W., Natarajan R. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation. Diabetes. 2008;57:3190–3198. doi: 10.2337/db08-0645. PubMed DOI PMC
Miao F., Chen Z., Zhang L., Liu Z., Wu X., Yuan Y.C., Natarajan R. Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. J. Biol. Chem. 2012;287:16335–16345. doi: 10.1074/jbc.M111.330373. PubMed DOI PMC
Miao F., Gonzalo I.G., Lanting L., Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem. 2004;279:18091–18097. doi: 10.1074/jbc.M311786200. PubMed DOI
Miao F., Wu X., Zhang L., Yuan Y.C., Riggs A.D., Natarajan R. Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J. Biol. Chem. 2007;282:13854–13863. doi: 10.1074/jbc.M609446200. PubMed DOI
Chen S.S., Jenkins A.J., Majewski H. Elevated plasma prostaglandins and acetylated histone in monocytes in type 1 diabetes patients. Diabet. Med. 2009;26:182–186. doi: 10.1111/j.1464-5491.2008.02658.x. PubMed DOI
Liu X.Y., Xu J.F. Reduced histone H3 acetylation in CD4+ T lymphocytes: Potential mechanism of latent autoimmune diabetes in adults. Dis. Markers. 2015;2015:285125. doi: 10.1155/2015/285125. PubMed DOI PMC
Holoch D., Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 2015;16:71–84. doi: 10.1038/nrg3863. PubMed DOI PMC
Svoboda P. Renaissance of mammalian endogenous RNAi. FEBS Lett. 2014;588:2550–2556. doi: 10.1016/j.febslet.2014.05.030. PubMed DOI
Hezova R., Slaby O., Faltejskova P., Mikulkova Z., Buresova I., Raja M., Hodek J., Ovesna J., Michalek J. MicroRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell. Immunol. 2010;260:70–74. doi: 10.1016/j.cellimm.2009.10.012. PubMed DOI
de Jong V.M., van der Slik A.R., Laban S., van ‘t Slot R., Koeleman B.P.C., Zaldumbide A., Roep B.O. Survival of autoreactive T lymphocytes by microRNA-mediated regulation of apoptosis through TRAIL and Fas in type 1 diabetes. Genes Immun. 2016;17:342–348. doi: 10.1038/gene.2016.29. PubMed DOI
Sebastiani G., Grieco F.A., Spagnuolo I., Galleri L., Cataldo D., Dotta F. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab. Res. Rev. 2011;27:862–866. doi: 10.1002/dmrr.1262. PubMed DOI
Salas-Perez F., Codner E., Valencia E., Pizarro C., Carrasco E., Perez-Bravo F. MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology. 2013;218:733–737. doi: 10.1016/j.imbio.2012.08.276. PubMed DOI
Wang S., Wan X., Ruan Q. The microRNA-21 in autoimmune diseases. Int. J. Mol. Sci. 2016;17:864. doi: 10.3390/ijms17060864. PubMed DOI PMC
Yang M., Ye L., Wang B., Gao J., Liu R., Hong J., Wang W., Gu W., Ning G. Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients. J. Diabetes. 2015;7:158–165. doi: 10.1111/1753-0407.12163. PubMed DOI
Zheng Y., Wang Z., Zhou Z. miRNAs: Novel regulators of autoimmunity-mediated pancreatic β-cell destruction in type 1 diabetes. Cell. Mol. Immunol. 2017;14:488–496. doi: 10.1038/cmi.2017.7. PubMed DOI PMC
Garo L.P., Murugaiyan G. Contribution of microRNAs to autoimmune diseases. Cell. Mol. Life. Sci. 2016;73:2041–2051. doi: 10.1007/s00018-016-2167-4. PubMed DOI PMC
Ruan Q., Wang T., Kameswaran V., Wei Q., Johnson D.S., Matschinsky F., Shi W., Chen Y.H. The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic β cell death. Proc. Natl. Acad. Sci. USA. 2011;108:12030–12035. doi: 10.1073/pnas.1101450108. PubMed DOI PMC
Jerram S.T., Dang M.N., Leslie R.D. The role of epigenetics in type 1 diabetes. Curr. Diabetes Rep. 2017;17:89. doi: 10.1007/s11892-017-0916-x. PubMed DOI PMC
Zullo A., Sommese L., Nicoletti G., Donatelli F., Mancini F.P., Napoli C. Epigenetics and type 1 diabetes: Mechanisms and translational applications. Transl. Res. 2017;185:85–93. doi: 10.1016/j.trsl.2017.05.002. PubMed DOI