Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA134633
NCI NIH HHS - United States
R01 EB024015
NIBIB NIH HHS - United States
R01 NS027036
NINDS NIH HHS - United States
PubMed
31873312
PubMed Central
PMC8171115
DOI
10.1038/s41591-019-0674-1
PII: 10.1038/s41591-019-0674-1
Knihovny.cz E-zdroje
- MeSH
- amyotrofická laterální skleróza genetika patofyziologie terapie MeSH
- atrofie MeSH
- degenerace nervu genetika patofyziologie terapie MeSH
- Dependovirus metabolismus MeSH
- interneurony patologie MeSH
- lidé MeSH
- malá interferující RNA aplikace a dávkování MeSH
- messenger RNA genetika metabolismus MeSH
- mícha diagnostické zobrazování patologie patofyziologie MeSH
- motorické evokované potenciály MeSH
- motorické neurony patologie MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- pia mater patologie patofyziologie MeSH
- prasata MeSH
- primáti MeSH
- progrese nemoci MeSH
- regulace genové exprese MeSH
- sbalování proteinů MeSH
- superoxiddismutasa 1 genetika metabolismus MeSH
- technika přenosu genů * MeSH
- umlčování genů * MeSH
- vývoj svalů MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- malá interferující RNA MeSH
- messenger RNA MeSH
- superoxiddismutasa 1 MeSH
Gene silencing with virally delivered shRNA represents a promising approach for treatment of inherited neurodegenerative disorders. In the present study we develop a subpial technique, which we show in adult animals successfully delivers adeno-associated virus (AAV) throughout the cervical, thoracic and lumbar spinal cord, as well as brain motor centers. One-time injection at cervical and lumbar levels just before disease onset in mice expressing a familial amyotrophic lateral sclerosis (ALS)-causing mutant SOD1 produces long-term suppression of motoneuron disease, including near-complete preservation of spinal α-motoneurons and muscle innervation. Treatment after disease onset potently blocks progression of disease and further α-motoneuron degeneration. A single subpial AAV9 injection in adult pigs or non-human primates using a newly designed device produces homogeneous delivery throughout the cervical spinal cord white and gray matter and brain motor centers. Thus, spinal subpial delivery in adult animals is highly effective for AAV-mediated gene delivery throughout the spinal cord and supraspinal motor centers.
Department of Anesthesiology University of the Ryukyus Okinawa Japan
Department of Neurosurgery University of California San Diego La Jolla CA USA
Department of Radiology University of California San Diego La Jolla CA USA
Dept of Biophysics Institute of Experimental Physics Slovak Academy of Sciences Kosice Slovakia
Institute of Animal Physiology and Genetics AS CR v v i Liběchov Czech Republic
Institute of Neurobiology Slovak Academy of Sciences Kosice Slovakia
Vector Core Laboratory University of California San Diego La Jolla CA USA
Zobrazit více v PubMed
Rosen DR et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993). PubMed
Matsumoto A et al. Disease progression of human SOD1 (G93A) transgenic ALS model rats. J. Neurosci. Res. 83, 119–133 (2006). PubMed
Kaur SJ, McKeown SR & Rashid S Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 577, 109–118 (2016). PubMed
van Zundert B & Brown RH Jr. Silencing strategies for therapy of SOD1-mediated ALS. Neurosci. Lett. 636, 32–39 (2017). PubMed
Howland DS et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl Acad. Sci. USA 99, 1604–1609 (2002). PubMed PMC
McGoldrick P, Joyce PI, Fisher EM & Greensmith L Rodent models of amyotrophic lateral sclerosis. Biochim. Biophys. Acta. 1832, 1421–1436 (2013). PubMed
Ilieva H, Polymenidou M & Cleveland DW Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772 (2009). PubMed PMC
Yamanaka K et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc. Natl Acad. Sci. USA 105, 7594–7599 (2008). PubMed PMC
Kang SH et al. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci. 16, 571–579 (2013). PubMed PMC
Hefferan MP et al. Human neural stem cell replacement therapy for amyotrophic lateral sclerosis by spinal transplantation. PLoS ONE 7, e42614 (2012). PubMed PMC
Boillee S et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006). PubMed
Yamanaka K et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat. Neurosci. 11, 251–253 (2008). PubMed PMC
Borel F et al. Therapeutic rAAVrh10 mediated SOD1 silencing in adult SOD1(G93A) mice and nonhuman primates. Hum. Gene Ther. 27, 19–31 (2016). PubMed PMC
Iannitti T et al. Translating SOD1 gene silencing toward the clinic: a highly efficacious, off-target-free, and biomarker-supported strategy for fALS. Mol. Ther. Nucleic Acids 12, 75–88 (2018). PubMed PMC
Stoica L et al. Adeno-associated virus-delivered artificial microRNA extends survival and delays paralysis in an amyotrophic lateral sclerosis mouse model. Ann. Neurol. 79, 687–700 (2016). PubMed PMC
Foust KD et al. Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS. Mol. Ther. 21, 2148–2159 (2013). PubMed PMC
Smith RA et al. Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest. 116, 2290–2296 (2006). PubMed PMC
McCampbell A et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J. Clin. Invest. 128, 3558–3567 (2018). PubMed PMC
Biferi MG et al. A new AAV10-U7-mediated gene therapy prolongs survival and restores function in an ALS mouse model. Mol. Ther. 25, 2038–2052 (2017). PubMed PMC
Miyanohara A et al. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs. Mol. Ther. Methods Clin. Dev. 3, 16046 (2016). PubMed PMC
Tadokoro T et al. Subpial adeno-associated virus 9 (AAV9) vector delivery in adult mice. J. Vis. Exp. 125, 55770 (2017). PubMed PMC
Wong PC et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995). PubMed
Parone PA et al. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J. Neurosci. 33, 4657–4671 (2013). PubMed PMC
Filali M, Lalonde R & Rivest S Sensorimotor and cognitive functions in a SOD1G37R transgenic mouse model of amyotrophic lateral sclerosis. Behav. Brain Res. 225, 215–221 (2011). PubMed
Gros-Louis F, Soucy G, Lariviere R & Julien JP Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J. Neurochem. 113, 1188–1199 (2010). PubMed
Tanaka Y et al. Cardiac sympathetic function in the patients with amyotrophic lateral sclerosis: analysis using cardiac [123I]MIBG scintigraphy. J. Neurol. 260, 2380–2386 (2013). PubMed
Linden D, Diehl RR & Berlit P Reduced baroreflex sensitivity and cardiorespiratory transfer in amyotrophic lateral sclerosis. Electroencephalogr. Clin. Neurophysiol. 109, 387–390 (1998). PubMed
Dalla Vecchia L et al. Cardiovascular neural regulation is impaired in amyotrophic lateral sclerosis patients. A study by spectral and complexity analysis of cardiovascular oscillations. Physiol. Meas. 36, 659–670 (2015). PubMed
Chapleau MW & Sabharwal R Methods of assessing vagus nerve activity and reflexes. Heart Fail. Rev. 16, 109–127 (2011). PubMed PMC
Caravaca AS et al. A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve. J. Neural Eng. 14, 066005 (2017). PubMed PMC
Shimizu T, Kato S, Hayashi M, Hayashi H & Tanabe H Amyotrophic lateral sclerosis with hypertensive attacks: blood pressure changes in response to drug administration. Clin. Auton. Res. 6, 241–244 (1996). PubMed
Shemisa K, Kaelber D, Parikh SA & Mackall JA Autonomic etiology of heart block in amyotrophic lateral sclerosis: a case report. J. Med. Case Rep. 8, 224 (2014). PubMed PMC
Usvald D et al. Analysis of dosing regimen and reproducibility of intraspinal grafting of human spinal stem cells in immunosuppressed minipigs. Cell Transplant. 19, 1103–1122 (2010). PubMed
Federici T, Riley J, Park J, Bain M & Boulis N Preclinical safety validation of a stabilized viral vector direct injection approach to the cervical spinal cord. Clin. Transl. Sci. 2, 165–167 (2009). PubMed PMC
Xiao X, Li J & Samulski RJ Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232 (1998). PubMed PMC
Lai NC et al. Improved function of the failing rat heart by regulated expression of insulin-like growth factor I via intramuscular gene transfer. Hum. Gene Ther. 23, 255–261 (2012). PubMed PMC
Xu Q et al. In vivo gene knockdown in rat dorsal root ganglia mediated by self-complementary adeno-associated virus serotype 5 following intrathecal delivery. PLoS ONE 7, e32581 (2012). PubMed PMC
Herzog A & Brosamle C ‘Semifree-floating’ treatment: a simple and fast method to process consecutive sections for immunohistochemistry and neuronal tracing. J. Neurosci. Methods 72, 57–63 (1997). PubMed