Host-specific competitiveness to form nodules in Rhizobium leguminosarum symbiovar viciae
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31873949
PubMed Central
PMC7687279
DOI
10.1111/nph.16392
Knihovny.cz E-resources
- Keywords
- Pisum sativum, Vicia faba, Rhizobium leguminosarum symbiovar viciae, competitiveness, genospecies, nod genes, nodules, symbiosis,
- MeSH
- Phylogeny MeSH
- Rhizobium leguminosarum * genetics MeSH
- Rhizobium * MeSH
- Symbiosis MeSH
- Vicia faba * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Fabeae legumes such as pea and faba bean form symbiotic nodules with a large diversity of soil Rhizobium leguminosarum symbiovar viciae (Rlv) bacteria. However, bacteria competitive to form root nodules (CFN) are generally not the most efficient to fix dinitrogen, resulting in a decrease in legume crop yields. Here, we investigate differential selection by host plants on the diversity of Rlv. A large collection of Rlv was collected by nodule trapping with pea and faba bean from soils at five European sites. Representative genomes were sequenced. In parallel, diversity and abundance of Rlv were estimated directly in these soils using metabarcoding. The CFN of isolates was measured with both legume hosts. Pea/faba bean CFN were associated to Rlv genomic regions. Variations of bacterial pea and/or faba bean CFN explained the differential abundance of Rlv genotypes in pea and faba bean nodules. No evidence was found for genetic association between CFN and variations in the core genome, but variations in specific regions of the nod locus, as well as in other plasmid loci, were associated with differences in CFN. These findings shed light on the genetic control of CFN in Rlv and emphasise the importance of host plants in controlling Rhizobium diversity.
AGRITEC 78701 Šumperk Czech Republic
AGroécologie Innovation et teRritoires INRAE ENSAT 31326 Castanet Tolosan France
Departamento de Ciencias y Recursos Agrícolas y Forestales University of Córdoba 14071 Córdoba Spain
Department of Biology University of York York YO10 5DD UK
Institute of Field and Vegetable Crops 21000 Novi Sad Serbia
See more in PubMed
Amarger N. 1981. Competition for nodule formation between effective and ineffective strains of Rhizobium meliloti . Soil Biology and Biochemistry 13: 475–480.
Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S, Simon MF, Young JPW. 2018. Horizontal transfer of symbiosis genes within and between rhizobial genera: occurrence and importance. Genes 9: 321. PubMed PMC
Baev N, Schultze M, Barlier I, Ha DC, Virelizier H, Kondorosi E, Kondorosi A. 1992. Rhizobium nodM and nodN genes are common nod genes: nodM encodes functions for efficiency of nod signal production and bacteroid maturation. Journal of Bacteriology 174: 7555–7565. PubMed PMC
Bloemberg GV, Kamst E, Harteveld M, van der Drift KM, Haverkamp J, Thomas‐Oates JE, Lugtenberg BJ, Spaink HP. 1995. A central domain of Rhizobium NodE protein mediates host specificity by determining the hydrophobicity of fatty acyl moieties of nodulation factors. Molecular Microbiology 16: 1123–1136. PubMed
Bourion V, Heulin‐Gotty K, Aubert V, Tisseyre P, Chabert‐Martinello M, Pervent M, Delaitre C, Vile D, Siol M, Duc G et al. 2018. Co‐inoculation of a pea core‐collection with diverse rhizobial strains shows competitiveness for nodulation and efficiency of nitrogen fixation are distinct traits in the interaction. Frontiers in Plant Science 8: 2249. PubMed PMC
Bremer E, Rennie DA, Rennie RJ. 1988. Dinitrogen fixation of lentil, field pea and fababean under dryland conditions. Canadian Journal of Soil Science 68: 553–562.
Broughton WJ, Jabbouri S, Perret X. 2000. Keys to symbiotic harmony. Journal of Bacteriology 182: 5641–5652. PubMed PMC
Cavassim MIA, Moeskjaer S, Moslemi C, Fields B, Bachmann A, Vilhjalmsson B, Schierup MH, Young JPW, Andersen SU. 2019. The genomic architecture of introgression among sibling species of bacteria. bioRxiv: 526707. doi: 10.1101/526707. DOI
Deakin WJ, Broughton WJ. 2009. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nature Reviews. Microbiology 7: 312–320. PubMed
Debellé F, Maillet F, Vasse J, Rosenberg C, de Billy F, Truchet G, Dénarié J, Ausubel FM. 1988. Interference between Rhizobium meliloti and Rhizobium trifolii nodulation genes: genetic basis of R. meliloti dominance. Journal of Bacteriology 170: 5718–5727. PubMed PMC
Demont N, Debellé F, Aurelle H, Dénarié J, Promé JC. 1993. Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo‐oligosaccharidic nodulation factors. Journal of Biological Chemistry 268: 20134–20142. PubMed
Dénarié J, Debellé F, Rosenberg C. 1992. Signaling and host range variation in nodulation. Annual Review of Microbiology 46: 497–531. PubMed
Devine TE, Kuykendall LD, Breithaupt BH. 1980. Nodulation of soybeans carrying the nodulation‐restrictive gene, rj1, by an incompatible Rhizobium japonicum strain upon mixed inoculation with a compatible strain. Canadian Journal of Microbiology 26: 179–182. PubMed
Downie JA, Surin BP. 1990. Either of two nod gene loci can complement the nodulation defect of a nod deletion mutant of Rhizobium leguminosarum bv viciae . Molecular & general genetics: MGG 222: 81–86. PubMed
Economou A, Hamilton WD, Johnston AW, Downie JA. 1990. The Rhizobium nodulation gene nodO encodes a Ca2(+)‐binding protein that is exported without N‐terminal cleavage and is homologous to haemolysin and related proteins. EMBO Journal 9: 349–354. PubMed PMC
Fesenko AN, Provorov NA, Orlova IF, Orlov VP, Simarov BV. 1995. Selection of Rhizobium leguminosarum bv. viceae strains for inoculation of Pisum sativum L. cultivars: analysis of symbiotic efficiency and nodulation competitiveness. Plant and Soil 172: 189–198.
Fields B, Moeskjær S, Friman V‐P, Andersen SU, Young JPW. 2019. MAUI‐seq: multiplexed, high‐throughput amplicon diversity profiling using unique molecular identifiers. bioRxiv: 538587. doi: 10.1101/538587. DOI
Firmin JL, Wilson KE, Carlson RW, Davies AE, Downie JA. 1993. Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O‐acetylation of the Rhizobium leguminosarum lipo‐oligosaccharide nodulation factor. Molecular Microbiology 10: 351–360. PubMed
González V, Santamaría RI, Bustos P, Pérez‐Carrascal OM, Vinuesa P, Juárez S, Martínez‐Flores I, Cevallos MÁ, Brom S, Martínez‐Romero E et al. 2019. Phylogenomic rhizobium species are structured by a continuum of diversity and genomic clusters. Frontiers in Microbiology 10: 910. PubMed PMC
Hogg B, Davies AE, Wilson KE, Bisseling T, Downie JA. 2002. Competitive nodulation blocking of cv. Afghanistan pea is related to high levels of nodulation factors made by some strains of Rhizobium leguminosarum bv. viciae . Molecular Plant–Microbe Interactions 15: 60–68. PubMed
Jain C, Rodriguez‐R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications 9: 5114. PubMed PMC
Jorrin B, Imperial J. 2015. Population genomics analysis of legume host preference for specific rhizobial genotypes in the Rhizobium leguminosarum bv. viciae symbioses. Molecular Plant–Microbe Interactions 28: 310–318. PubMed
Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S‐Y, Freimer NB, Sabatti C, Eskin E. 2010. Variance component model to account for sample structure in genome‐wide association studies. Nature Genetics 42: 348–354. PubMed PMC
Kawaharada Y, Kelly S, Nielsen MW, Hjuler CT, Gysel K, Muszyński A, Carlson RW, Thygesen MB, Sandal N, Asmussen MH et al. 2015. Receptor‐mediated exopolysaccharide perception controls bacterial infection. Nature 523: 308–312. PubMed
Kiers ET, Rousseau RA, West SA, Denison RF. 2003. Host sanctions and the legume–rhizobium mutualism. Nature 425: 78–81. PubMed
Kumar N, Lad G, Giuntini E, Kaye ME, Udomwong P, Shamsani NJ, Young JPW, Bailly X. 2015. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum . Open Biology 5: 140133. PubMed PMC
Laguerre G, Depret G, Bourion V, Duc G. 2007. Rhizobium leguminosarum bv. viciae genotypes interact with pea plants in developmental responses of nodules, roots and shoots. New Phytologist 176: 680–690. PubMed
Laguerre G, Heulin‐Gotty K, Brunel B, Klonowska A, Le Quéré A, Tillard P, Prin Y, Cleyet‐Marel J‐C, Lepetit M. 2012. Local and systemic N signaling are involved in Medicago truncatula preference for the most efficient Sinorhizobium symbiotic partners. New Phytologist 195: 437–449. PubMed
Laguerre G, Louvrier P, Allard M‐R, Amarger N. 2003. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes. Applied and Environmental Microbiology 69: 2276–2283. PubMed PMC
Lewis‐Henderson WR, Djordjevic MA. 1991a. nodT, a positively‐acting cultivar specificity determinant controlling nodulation of Trifolium subterraneum by Rhizobium leguminosarum biovar trifolii . Plant Molecular Biology 16: 515–526. PubMed
Lewis‐Henderson WR, Djordjevic MA. 1991b. A cultivar‐specific interaction between Rhizobium leguminosarum bv. trifolii and subterranean clover is controlled by nodM, other bacterial cultivar specificity genes, and a single recessive host gene. Journal of Bacteriology 173: 2791–2799. PubMed PMC
Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová‐Holubová J, Sadílková L et al. 2010. RTX proteins: a highly diverse family secreted by a common mechanism. Federation of European Microbiology Societies 34: 1076–1112. PubMed PMC
Lipuma J, Cinege G, Bodogai M, Oláh B, Kiers A, Endre G, Dupont L, Dusha I. 2014. A vapBC‐type toxin‐antitoxin module of Sinorhizobium meliloti influences symbiotic efficiency and nodule senescence of Medicago sativa . Environmental Microbiology 16: 3714–3729. PubMed
McAnulla C, Edwards A, Sanchez-Contreras M, Sawers RG, Downie JA. 2007. Quorum-sensingregulated transcriptional initiation of plasmid transfer and replication genes in Rhizobium leguminosarum biovar viciae . Microbiology 153: 2074–2082. PubMed
McKenzie RH, Middleton AB, Solberg ED, DeMulder J, Flore N, Clayton GW, Bremer E. 2001. Response of pea to rhizobia inoculation and starter nitrogen in Alberta. Canadian Journal of Plant Science 81: 637–643.
Meade J, Higgins P, O'Gara F. 1985. Studies on the inoculation and competitiveness of a Rhizobium leguminosarum strain in soils containing indigenous rhizobia. Applied and Environmental Microbiology 49: 899–903. PubMed PMC
Meier‐Kolthoff JP, Auch AF, Klenk H‐P, Göker M. 2013. Genome sequence‐based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. PubMed PMC
Mergaert P, Montagu MV, Holsters M. 1997. Molecular mechanisms of Nod factor diversity. Molecular Microbiology 25: 811–817. PubMed
Moawad HA, Ellis WR, Schmidt EL. 1984. Rhizosphere response as a factor in competition among three serogroups of indigenous Rhizobium japonicum for nodulation of field‐grown soybeans. Applied and Environmental Microbiology 47: 607–612. PubMed PMC
Mutch LA, Young JPW. 2004. Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Molecular Ecology 13: 2435–2444. PubMed
Naamala J, Jaiswal SK, Dakora FD. 2016. Antibiotics resistance in Rhizobium: type, process, mechanism and benefit for agriculture. Current Microbiology 72: 804–816. PubMed
Ozer EA, Allen JP, Hauser AR. 2014. Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC genomics 15: 737. PubMed PMC
Porter SS, Chang PL, Conow CA, Dunham JP, Friesen ML. 2017. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium . The ISME Journal 11: 248–262. PubMed PMC
Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EM, Albrektsen AS, James EK, Thirup S, Stougaard J. 2007. LysM domains mediate lipochitin–oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO Journal 26: 3923–3935. PubMed PMC
Rivilla R, Sutton JM, Downie JA. 1995. Rhizobium leguminosarum NodT is related to a family of outer‐membrane transport proteins that includes TolC, PrtF, CyaE and AprF. Gene 161: 27–31. PubMed
Robleto EA, Kmiecik K, Oplinger ES, Nienhuis J, Triplett EW. 1998. Trifolitoxin production increases nodulation competitiveness of Rhizobium etli CE3 under agricultural conditions. Applied and Environmental Microbiology 64: 2630–2633. PubMed PMC
Saïdi S, Ramírez‐Bahena M‐H, Santillana N, Zúñiga D, Álvarez‐Martínez E, Peix A, Mhamdi R, Velázquez E. 2014. Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. International Journal of Systematic and Evolutionary Microbiology 64: 242–247. PubMed
Sallet E, Gouzy J, Schiex T. 2014. EuGene‐PP: a next‐generation automated annotation pipeline for prokaryotic genomes. Bioinformatics 30: 2659–2661. PubMed
Spaink HP, Sheeley DM, van Brussel AA, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJ. 1991. A novel highly unsaturated fatty acid moiety of lipo‐oligosaccharide signals determines host specificity of Rhizobium. Nature 354: 125–130. PubMed
Sulima AS, Zhukov VA, Afonin AA, Zhernakov AI, Tikhonovich IA, Lutova LA. 2017. Selection signatures in the first exon of paralogous receptor kinase genes from the Sym2 region of the Pisum sativum L. Genome. Frontiers in Plant Science 8: 1967. PubMed PMC
Surin BP, Downie JA. 1988. Characterization of the Rhizobium leguminosarum genes nodLMN involved in efficient host‐specific nodulation. Molecular Microbiology 2: 173–183. PubMed
Surin BP, Watson JM, Hamilton WDO, Economou A, Downie JA. 1990. Molecular characterization of the nodulation gene, nodT, from two biovars of Rhizobium leguminosarum . Molecular Microbiology 4: 245–252. PubMed
Sutton JM, Lea EJ, Downie JA. 1994. The nodulation‐signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes. Proceedings of the National Academy of Sciences, USA 91: 9990–9994. PubMed PMC
Tian CF, Young JPW, Wang ET, Tamimi SM, Chen WX. 2010. Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba: the role of recombination and lateral gene transfer. FEMS Microbiology Ecology 73: 563–576. PubMed
Triplett EW, Sadowsky MJ. 1992. Genetics of competition for nodulation of legumes. Annual Review of Microbiology 46: 399–428. PubMed
Wakelin S, Tillard G, van Ham R, Ballard R, Farquharson E, Gerard E, Geurts R, Brown M, Ridgway H, O'Callaghan M. 2018. High spatial variation in population size and symbiotic performance of Rhizobium leguminosarum bv. trifolii with white clover in New Zealand pasture soils. PLoS ONE 13: e0192607. PubMed PMC
Yang S, Tang F, Gao M, Krishnan HB, Zhu H. 2010. R gene‐controlled host specificity in the legume‐rhizobia symbiosis. Proceedings of the National Academy of Sciences, USA 107: 18735–18740. PubMed PMC
Yost CK, Del Bel KL, Quandt J, Hynes MF. 2004. Rhizobium leguminosarum methyl‐accepting chemotaxis protein genes are down‐regulated in the pea nodule. Archives of Microbiology 182: 505–513. PubMed
Yost CK, Rochepeau P, Hynes MF. 1998. Rhizobium leguminosarum contains a group of genes that appear to code for methyl‐accepting chemotaxis proteins. Microbiology 144: 1945–1956. PubMed
Young JPW. 2016. Bacteria are smartphones and mobile genes are apps. Trends in Microbiology 24: 931–932. PubMed
Zézé A, Mutch LA, Young JP. 2001. Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil. Environmental Microbiology 3: 363–370. PubMed