Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31874980
PubMed Central
PMC6930199
DOI
10.1038/s41598-019-56176-6
PII: 10.1038/s41598-019-56176-6
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- lidé MeSH
- mechanika dýchání * MeSH
- plíce MeSH
- počítačová simulace * MeSH
- polymery * MeSH
- umělé dýchání * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polymery * MeSH
Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10-18 bpm) and tidal volumes (400-600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (nTotal = 3273) with highest standard deviation |3σ| for both, simplified lung equivalents ([Formula: see text] = 23.98 ± 1.04 l/min, μP = -0.78 ± 0.63 hPa) and primed porcine lungs ([Formula: see text] = 18.87 ± 2.49 l/min, μP = -21.13 ± 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.
Zobrazit více v PubMed
Festing S, Wilkinson R. The ethics of animal research: Talking point on the use of animals in scientific research. EMBO reports. 2007;8:526–530. doi: 10.1038/sj.embor.7400993. PubMed DOI PMC
Russell, W. & Burch, R. The Principles of Humane Experimental Technique (Methuen, London, UK, 1959).
Harper L, Herbst KW, Kalfa N. Ethical issues in research: Human and animal experimentation. J. Pediatr. Urol. 2018;14:287–288. doi: 10.1016/j.jpurol.2017.12.012. PubMed DOI
Herr Keela, Gibson Stephen, Hadjistavropoulos Thomas. The Wiley Handbook on the Aging Mind and Brain. Chichester, UK: John Wiley & Sons, Ltd; 2018. PAIN; pp. 628–647.
European Parliament. Directive 2010/63/EU - On the protection of animals used for scientific purposes. Off. J. Eur. Union 33–79, 32010L0063 (2010).
European Parliament Regulation 2019/1010 - On the alignment of reporting obligations in the field of legislation related to the environment, and amending Regulations (EC) No 166/2006 and (EU) No 995/2010 of the European Parliament and of the Council, Directives 2002/49/EC, 2. Off. J. Eur. Union. 2019;2019:115–127.
Zuang, V., Barroso, J., Belz, S., Berggren, E. & Bernasconi, C. Eurl ecvam status report on the development, validation and regulatory acceptance of alternative methods and approaches (2018).
Motola I, Devine LA, Chung HS, Sullivan JE, Issenberg SB. Simulation in healthcare education: A best evidence practical guide. AMEE Guide No. 82. Med. teacher 35. 2013;30:e1511. doi: 10.3109/0142159X.2013.818632. PubMed DOI
Yokoyama, A. Advances in Asthma: Pathophysiology, Diagnosis and Treatment (Springer Singapore, 2019).
OECD & European Union Health at a Glance: Europe 2016: State of Health in the EU Cycle. (OECD Publishing, Paris, 2016).
Sakagami Masahiro. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Advanced Drug Delivery Reviews. 2006;58(9-10):1030–1060. doi: 10.1016/j.addr.2006.07.012. PubMed DOI
Chary A, et al. Respiratory sensitization: Toxicological point of view on the available assays. Arch. Toxicol. 2018;92:803–822. doi: 10.1007/s00204-017-2088-5. PubMed DOI
Zheng, C. & Bennett, G. Applied Contaminant Transport Modeling, vol. 34 (Wiley-Interscience New York, 2002).
Longest P. Worth, Holbrook Landon T. In silico models of aerosol delivery to the respiratory tract — Development and applications. Advanced Drug Delivery Reviews. 2012;64(4):296–311. doi: 10.1016/j.addr.2011.05.009. PubMed DOI PMC
Koullapis P, et al. Regional aerosol deposition in the human airways: The SimInhale benchmark case and a critical assessment of In silico methods. Eur. J. Pharm. Sci. 2018;113:77–94. doi: 10.1016/J.EJPS.2017.09.003. PubMed DOI
Verbraak A, Beneken JE, Bogaard JM, Versprille A. Computer-controlled mechanical lung model for application in pulmonary function studies. Med Biol Eng Comput. 1995;33:776–783. doi: 10.1007/BF02523009. PubMed DOI
Chase JG, Yuta T, Mulligan KJ, Shaw GM, Horn B. A novel mechanical lung model of pulmonary diseases to assist with teaching and training. BMC Pulm. Medicine. 2006;6:1–11. doi: 10.1186/1471-2466-6-21. PubMed DOI PMC
Krueger-Ziolek, S., Knoebel, C., Schranz, C. & Moeller, K. Combination of engineering and medical education using an active mechanical lung simulator. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, 542–543, 10.1109/CBMS.2013.6627868 (2013).
Perinel S, et al. Development of an ex vivo human-porcine respiratory model for preclinical studies. Sci. Reports. 2017;7:43121. doi: 10.1038/srep43121. PubMed DOI PMC
Verbraak A, Rijnbeek P, Beneken J, Bogaard J, Versprille A. A new approach to mechanical simulation of lung behaviour: Piston movement. Med. & Biol. Eng. & Comput. 2001;39:82–89. doi: 10.1007/BF02345270. PubMed DOI
Mesic S, Babuska R, Hoogsteden HC, Verbraak AFM. Computer-controlled mechanical simulation of the artificially ventilated human respiratory system. IEEE Transactions on Biomed. Eng. 2003;50:731–743. doi: 10.1109/TBME.2003.812166. PubMed DOI
Meka VV, van Oostrom JH. Bellows-less lung system for the human patient simulator. Med. Biol. Eng. Comput. 2004;42:413–418. doi: 10.1007/BF02344718. PubMed DOI
Heili-Frades S, Peces-Barba G, Rodriguez-Nieto MJ. Design of a lung simulator for teaching lung mechanics in mechanical ventilation. Arch Bronconeumol. 2007;43:674–679. doi: 10.1157/13112966. PubMed DOI
Hofmann W. Modelling inhaled particle deposition in the human lung—A review. J. Aerosol Sci. 2011;42:693–724. doi: 10.1016/J.JAEROSCI.2011.05.007. DOI
Calay RK, Kurujareon J, Holdo AE. Numerical simulation of respiratory flow patterns within human lung. Respir. Physiol. & Neurobiol. 2002;130:201–221. doi: 10.1016/S0034-5687(01)00337-1. PubMed DOI
Forjan Mathias, Stiglbrunner Katharina, Steiner Theresa, Bureš Zbyněk, Drauschke Andreas. Sensor System Development for the Novel Spontaneous Active Breathing Lung Simulator, i-Lung. IFAC Proceedings Volumes. 2012;45(7):113–118. doi: 10.3182/20120523-3-CZ-3015.00024. DOI
David Veronika, Forjan Mathias, Steiner Theresa, Bureš Zbyněk, Drauschke Andreas. Mechanical and Electrical Specifications of the Active Lung Simulator i-Lung – Development of i-Lung 1.0 to i-Lung 2.0. IFAC Proceedings Volumes. 2013;46(28):13–23. doi: 10.3182/20130925-3-CZ-3023.00075. DOI
Solc F, et al. The mathematical model of a LUNG simulator. MEFANET J. 2014. 2014;2:71–78.
Braun, S. R. Respiratory rate and pattern. In Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition (Butterworths, 1990). PubMed
Carroll, R. Elsevier’s integrated physiology. In Pulmonary System, 99–115 (Mosby Elsevier, 2007).
Michigan Instruments INC. Model 1600 Dual Adult TTL Training/Test Lung (2018).
Prange HD. Laplace’s law and the alveolus: A misconception of anatomy and a misapplication of physics. Am. J. Physiol. - Adv. Physiol. Educ. 2003;27:34–40. doi: 10.1152/advan.00024.2002. PubMed DOI