Experimental Evaluation of Dry Powder Inhalers during Inhalation and Exhalation Using a Model of the Human Respiratory System (xPULM™)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35335876
PubMed Central
PMC8955467
DOI
10.3390/pharmaceutics14030500
PII: pharmaceutics14030500
Knihovny.cz E-zdroje
- Klíčová slova
- aerosol particle deposition, biomedical engineering, dry powder inhaler resistance, inspiratory flow rate, inspiratory pressure, mechanical upper airway model, optical aerosol spectrometry,
- Publikační typ
- časopisecké články MeSH
Dry powder inhalers are used by a large number of patients worldwide to treat respiratory diseases. The objective of this work is to experimentally investigate changes in aerosol particle diameter and particle number concentration of pharmaceutical aerosols generated by four dry powder inhalers under realistic inhalation and exhalation conditions. To simulate patients undergoing inhalation therapy, the active respiratory system model (xPULM™) was used. A mechanical upper airway model was developed, manufactured, and introduced as a part of the xPULM™ to represent the human upper respiratory tract with high fidelity. Integration of optical aerosol spectrometry technique into the setup allowed for evaluation of pharmaceutical aerosols. The results show that there is a significant difference (p < 0.05) in mean particle diameter between inhaled and exhaled particles with the majority of the particles depositing in the lung, while particles with the size of (>0.5 μm) are least influenced by deposition mechanisms. The fraction of exhaled particles ranges from 2.13% (HandiHaler®) over 2.94% (BreezHaler®), and 6.22% (Turbohaler®) to 10.24% (Ellipta®). These values are comparable to previously published studies. Furthermore, the mechanical upper airway model increases the resistance of the overall system and acts as a filter for larger particles (>3 μm). In conclusion, the xPULM™ active respiratory system model is a viable option for studying interactions of pharmaceutical aerosols and the respiratory tract regarding applicable deposition mechanisms. The model strives to support the reduction of animal experimentation in aerosol research and provides an alternative to experiments with human subjects.
Zobrazit více v PubMed
Forum of International Respiratory Societies . The Global Impact of Respiratory Disease. European Respiratory Society; Sheffield, UK: 2017.
Eurostat. Respiratory Diseases Statistics—Statistics Explained. 2020. [(accessed on 18 December 2021)]. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Respiratory_diseases_statistics&oldid=497079.
Sorino C., Negri S., Spanevello A., Visca D., Scichilone N. Inhalation therapy devices for the treatment of obstructive lung diseases: The history of inhalers towards the ideal inhaler. Eur. J. Intern. Med. 2020;75:15–18. doi: 10.1016/j.ejim.2020.02.023. PubMed DOI
Stein S.W., Thiel C.G. The History of Therapeutic Aerosols: A Chronological Review. J. Aerosol Med. Pulm. Drug Deliv. 2017;30:20–41. doi: 10.1089/jamp.2016.1297. PubMed DOI PMC
Wintemute K., Miller F. Dry powder inhalers are environmentally preferable to metered-dose inhalers. CMAJ. 2020;192:E846. doi: 10.1503/cmaj.75949. PubMed DOI PMC
Rau J.L. Practical problems with aerosol therapy in COPD. Respir. Care. 2006;51:158–172. PubMed
Holmes M.S., Seheult J.N., O’Connell P., D’Arcy S., Ehrhardt C., Healy A.M., Costello R.W., Reilly R.B. An Acoustic-Based Method to Detect and Quantify the Effect of Exhalation into a Dry Powder Inhaler. J. Aerosol Med. Pulm. Drug Deliv. 2015;28:247–253. doi: 10.1089/jamp.2014.1169. PubMed DOI
Geller D.E. Comparing Clinical Features of the Nebulizer, Metered-Dose Inhaler, and Dry Powder Inhaler. Respir. Care. 2005;50:1313–1322. PubMed
Clark A.R., Weers J.G., Dhand R. The Confusing World of Dry Powder Inhalers: It Is All about Inspiratory Pressures, Not Inspiratory Flow Rates. J. Aerosol Med. Pulm. Drug Deliv. 2020;33:1–11. doi: 10.1089/jamp.2019.1556. PubMed DOI PMC
Atkins S., MacIntyre H., Amato M.T. Dry powder inhalers: An overview—Discussion. Respir. Care. 2005;50:1312. PubMed
Mahler D.A., Waterman L.A., Gifford A.H. Prevalence and COPD phenotype for a suboptimal peak inspiratory flow rate against the simulated resistance of the diskus® dry powder inhaler. J. Aerosol Med. Pulm. Drug Deliv. 2013;26:174–179. doi: 10.1089/jamp.2012.0987. PubMed DOI
Grant A.C., Walker R., Hamilton M., Garrill K. The ELLIPTA® dry powder inhaler: Design, functionality, in vitro dosing performance and critical task compliance by patients and caregivers. J. Aerosol Med. Pulm. Drug Deliv. 2015;28:474–485. doi: 10.1089/jamp.2015.1223. PubMed DOI PMC
Mahler D.A. Peak inspiratory flow rate as a criterion for dry powder inhaler use in chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 2017;14:1103–1107. doi: 10.1513/AnnalsATS.201702-156PS. PubMed DOI
Duarte A.G., Tung L., Zhang W., Hsu E.S., Kuo Y.F., Sharma G. Spirometry measurement of peak inspiratory flow identifies suboptimal use of dry powder inhalers in ambulatory patients with COPD. Chronic Obstr. Pulm. Dis. 2019;6:246–255. doi: 10.15326/jcopdf.6.3.2018.0163. PubMed DOI PMC
Chen S.Y., Huang C.K., Peng H.C., Yu C.J., Chien J.Y. Inappropriate Peak Inspiratory Flow Rate with Dry Powder Inhaler in Chronic Obstructive Pulmonary Disease. Sci. Rep. 2020;10:1–9. doi: 10.1038/s41598-020-64235-6. PubMed DOI PMC
Taki M., Marriott C., Zeng X.M., Martin G.P. Aerodynamic deposition of combination dry powder inhaler formulations in vitro: A comparison of three impactors. Int. J. Pharm. 2010;388:40–51. doi: 10.1016/j.ijpharm.2009.12.031. PubMed DOI
Versteeg H.K., Roberts D.L., Chambers F., Cooper A., Copley M., Mitchell J.P., Mohammed H. A cross-industry assessment of the flow rate-elapsed time profiles of test equipment typically used for dry-powder inhaler (DPI) testing: Part 2– analysis of transient air flow in the testing of DPIs with compendial cascade impactors. Aerosol Sci. Technol. 2020;54:1448–1470. doi: 10.1080/02786826.2020.1792825. DOI
Greguletz R., Andersson P.U., Cooper A., Chambers F., Copley M.A., Daniels G., Hamilton M., Hammond M., Mohammed H., Roberts D.L., et al. A cross-industry assessment of the flow rate-time profiles of test equipment typically used for dry-powder inhaler (DPI) testing: Part 1–compendial apparatuses. Aerosol Sci. Technol. 2020;54:1424–1447. doi: 10.1080/02786826.2020.1792824. DOI
Wei X., Hindle M., Kaviratna A., Huynh B.K., Delvadia R.R., Sandell D., Byron P.R. In vitro tests for aerosol deposition. VI: Realistic testing with different mouth-throat models and in vitro - In vivo correlations for a dry powder inhaler, metered dose inhaler, and soft mist inhaler. J. Aerosol Med. Pulm. Drug Deliv. 2018;31:358–371. doi: 10.1089/jamp.2018.1454. PubMed DOI
Ravi Kannan R., Przekwas A.J., Singh N., Delvadia R., Tian G., Walenga R. Pharmaceutical aerosols deposition patterns from a Dry Powder Inhaler: Euler Lagrangian prediction and validation. Med. Eng. Phys. 2017;42:35–47. doi: 10.1016/j.medengphy.2016.11.007. PubMed DOI
Kopsch T., Murnane D., Symons D. Computational modelling and experimental validation of drug entrainment in a dry powder inhaler. Int. J. Pharm. 2018;553:37–46. doi: 10.1016/j.ijpharm.2018.10.021. PubMed DOI
Chalvatzaki E., Chatoutsidou S.E., Lazaridis M. Simulations of the deposition of pharmaceutical aerosols in the human respiratory tract by dry powder inhalers (DPIs) J. Drug Deliv. Sci. Technol. 2020;59:101915. doi: 10.1016/j.jddst.2020.101915. DOI
Finlayson-Pitts B.J., Pitts J.N. Analytical Methods and Typical Atmospheric Concentrations for Gases and Particles. Chem. Up. Low. Atmos. 2000;11:547–656. doi: 10.1016/B978-012257060-5/50013-7. DOI
Kulkarni V. Handbook of Non-Invasive Drug Delivery Systems: Science and Technology. Elsevier; Oxford, UK: 2009.
Bonam M., Christopher D., Cipolla D., Donovan B., Goodwin D., Holmes S., Lyapustina S., Mitchell J., Nichols S., Pettersson G., et al. Minimizing variability of cascade impaction measurements in inhalers and nebulizers. AAPS PharmSciTech. 2008;9:404–413. doi: 10.1208/s12249-008-9045-9. PubMed DOI PMC
Darquenne C. Deposition Mechanisms. J. Aerosol Med. Pulm. Drug Deliv. 2020;33:181–185. doi: 10.1089/jamp.2020.29029.cd. PubMed DOI
Tsuda A., Henry F.S., Butler J.P. Particle Transport and Deposition: Basic Physics of Particle Kinetics. Compr. Physiol. 2013;3:1437–1471. doi: 10.1002/cphy.c100085. PubMed DOI PMC
Tomasi C., Fuzzi S., Kochanovskij A.A., editors. Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2017. (Wiley Series in Atmospheric Physics and Remote Sensing).
Borghardt J.M., Kloft C., Sharma A. Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes. Can. Respir. J. 2018;2018:2732017. doi: 10.1155/2018/2732017. PubMed DOI PMC
Chow A.H.L., Tong H.H.Y., Chattopadhyay P., Shekunov B.Y. Particle Engineering for Pulmonary Drug Delivery. Pharm. Res. 2007;24:411–437. doi: 10.1007/s11095-006-9174-3. PubMed DOI
Boer A.H.D., Gjaltema D., Hagedoorn P., Frijlink H.W. Characterization of inhalation aerosols: A critical evaluation of cascade impactor analysis and laser diffraction technique. Int. J. Pharm. 2002;249:219–231. doi: 10.1016/S0378-5173(02)00526-4. PubMed DOI
Judge E.P., Hughes J.M.L., Egan J.J., Maguire M., Molloy E.L., O’Dea S. Anatomy and Bronchoscopy of the Porcine Lung. A Model for Translational Respiratory Medicine. Am. J. Respir. Cell Mol. Biol. 2014;51:334–343. doi: 10.1165/rcmb.2013-0453TR. PubMed DOI
Rogers C.S., Abraham W.M., Brogden K.A., Engelhardt J.F., Fisher J.T., McCray P.B., McLennan G., Meyerholz D.K., Namati E., Ostedgaard L.S., et al. The porcine lung as a potential model for cystic fibrosis. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2008;295:L240–L263. doi: 10.1152/ajplung.90203.2008. PubMed DOI PMC
The United States Pharmacopeial Convention . USP35 NF30, 2012: <601> Aerosols, Nasal Sprays, Metered-Dose Inhalers, and Dry Powder Inhalers. United States Pharmacopeial; Rockville, MD, USA: 2011.
Pasteka R., Santos da Costa J.P., Barros N., Kolar R., Forjan M. Patient–Ventilator Interaction Testing Using the Electromechanical Lung Simulator xPULM™ during V/A-C and PSV Ventilation Mode. Appl. Sci. 2021;11:3745. doi: 10.3390/app11093745. DOI
Pasteka R., Forjan M., Sauermann S., Drauschke A. Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation. Sci. Rep. 2019;9:19778. doi: 10.1038/s41598-019-56176-6. PubMed DOI PMC
Ahookhosh K., Pourmehran O., Aminfar H., Mohammadpourfard M., Sarafraz M.M., Hamishehkar H. Development of human respiratory airway models: A review. Eur. J. Pharm. Sci. 2020;145:105233. doi: 10.1016/j.ejps.2020.105233. PubMed DOI
Lizal F., Jedelsky J., Morgan K., Bauer K., Llop J., Cossio U., Kassinos S., Verbanck S., Ruiz-Cabello J., Santos A., et al. Experimental methods for flow and aerosol measurements in human airways and their replicas. Eur. J. Pharm. Sci. 2018;113:95–131. doi: 10.1016/j.ejps.2017.08.021. PubMed DOI
Russell W.M.S., Burch R.L. The Principles of Humane Experimental Technique. Methuen; London, UK: 1959. 238p
Horváth A., Balásházy I., Tomisa G., Farkas Á. Significance of breath-hold time in dry powder aerosol drug therapy of COPD patients. Eur. J. Pharm. Sci. 2017;104:145–149. doi: 10.1016/j.ejps.2017.03.047. PubMed DOI
Buttini F., Brambilla G., Copelli D., Sisti V., Balducci A.G., Bettini R., Pasquali I. Effect of Flow Rate on In Vitro Aerodynamic Performance of NEXThaler® in Comparison with Diskus® and Turbohaler® Dry Powder Inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2016;29:167–178. doi: 10.1089/jamp.2015.1220. PubMed DOI PMC
Sahin-Yilmaz A., Naclerio R.M. Anatomy and physiology of the upper airway. Proc. Am. Thorac. Soc. 2011;8:31–39. doi: 10.1513/pats.201007-050RN. PubMed DOI
Thomas R.J. Particle size and pathogenicity in the respiratory tract. Virulence. 2013;4:847–858. doi: 10.4161/viru.27172. PubMed DOI PMC
Lippmann M., Yeates D.B., Albert R.E. Deposition, retention, and clearance of inhaled particles. Br. J. Ind. Med. 1980;37:337–362. doi: 10.1136/oem.37.4.337. PubMed DOI PMC
Darquenne C. Aerosol deposition in health and disease. J. Aerosol Med. Pulm. Drug Deliv. 2012;25:140–147. doi: 10.1089/jamp.2011.0916. PubMed DOI PMC
Usmani O.S., Biddiscombe M.F., Nightingale J.A., Underwood S.R., Barnes P.J. Effects of bronchodilator particle size in asthmatic patients using monodisperse aerosols. J. Appl. Physiol. 2003;95:2106–2112. doi: 10.1152/japplphysiol.00525.2003. PubMed DOI
Usmani O.S., Biddiscombe M.F., Barnes P.J. Regional lung deposition and bronchodilator response as a function of β2-agonist particle size. Am. J. Respir. Crit. Care Med. 2005;172:1497–1504. doi: 10.1164/rccm.200410-1414OC. PubMed DOI
Newman S., Malik S., Hirst P., Pitcairn G., Heide A., Pabst J., Dinkelaker A., Fleischer W. Lung deposition of salbutamol in healthy human subjects from the MAGhaler dry powder inhaler. Respir. Med. 2002;96:1026–1032. doi: 10.1053/rmed.2002.1387. PubMed DOI
Virchow J.C., Poli G., Herpich C., Kietzig C., Ehlich H., Braeutigam D., Sommerer K., Häussermann S., Mariotti F. Lung Deposition of the Dry Powder Fixed Combination Beclometasone Dipropionate Plus Formoterol Fumarate Using NEXThaler® Device in Healthy Subjects, Asthmatic Patients, and COPD Patients. J. Aerosol Med. Pulm. Drug Deliv. 2018;31:269–280. doi: 10.1089/jamp.2016.1359. PubMed DOI PMC
Levy M.L., Carroll W., Izquierdo Alonso J.L., Keller C., Lavorini F., Lehtimäki L. Understanding Dry Powder Inhalers: Key Technical and Patient Preference Attributes. Adv. Ther. 2019;36:2547–2557. doi: 10.1007/s12325-019-01066-6. PubMed DOI PMC
Newman S.P., Busse W.W. REVIEW: Evolution of dry powder inhaler design, formulation, and performance. Respir. Med. 2002;96:293–304. doi: 10.1053/rmed.2001.1276. PubMed DOI
Abadelah M., Abdalla G., Chrystyn H., Larhrib H. Gaining an insight into the importance of each inhalation manoeuvre parameter using altered patients’ inhalation profiles. J. Drug Deliv. Sci. Technol. 2021;61:102181. doi: 10.1016/j.jddst.2020.102181. DOI
Hira D., Okuda T., Mizutani A., Tomida N., Okamoto H. In Vitro Evaluation of Optimal Inhalation Flow Patterns for Commercial Dry Powder Inhalers and Pressurized Metered Dose Inhalers With Human Inhalation Flow Pattern Simulator. J. Pharm. Sci. 2018;107:1731–1735. doi: 10.1016/j.xphs.2018.02.002. PubMed DOI
Hamilton M., Leggett R., Pang C., Charles S., Gillett B., Prime D. In vitro dosing performance of the ELLIPTA® dry powder inhaler using asthma and COPD patient inhalation profiles replicated with the electronic lung (eLung™) J. Aerosol Med. Pulm. Drug Deliv. 2015;28:498–506. doi: 10.1089/jamp.2015.1225. PubMed DOI PMC