Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review

. 2019 Dec 23 ; 12 (1) : . [epub] 20191223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31878054

Grantová podpora
723268 European Union's Horizon 2020

Among the biopolymers from animal sources, keratin is one the most abundant, with a major contribution from side stream products from cattle, ovine and poultry industry, offering many opportunities to produce cost-effective and sustainable advanced materials. Although many reviews have discussed the application of keratin in polymer-based biomaterials, little attention has been paid to its potential in association with other polymer matrices. Thus, herein, we present an extensive literature review summarizing keratin's compatibility with other synthetic, biosynthetic and natural polymers, and its effect on the materials' final properties in a myriad of applications. First, we revise the historical context of keratin use, describe its structure, chemical toolset and methods of extraction, overview and differentiate keratins obtained from different sources, highlight the main areas where keratin associations have been applied, and describe the possibilities offered by its chemical toolset. Finally, we contextualize keratin's potential for addressing current issues in materials sciences, focusing on the effect of keratin when associated to other polymers' matrices from biomedical to engineering applications, and beyond.

Zobrazit více v PubMed

Gupta R., Ramnani P. Microbial keratinases and their prospective applications: An overview. Appl. Microbiol. Biotechnol. 2006;70:21. doi: 10.1007/s00253-005-0239-8. PubMed DOI

Thys R.C.S., Brandelli A. Purification and properties of a keratinolytic metalloprotease from Microbacterium sp. J. Appl. Microbiol. 2006;101:1259–1268. doi: 10.1111/j.1365-2672.2006.03050.x. PubMed DOI

Ben Cao Gang Mu. 2010. Unesco Memory Of The World Register. Compendium of Materia Medica (P.R. China)

Bragulla H.H., Homberger D.G. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J. Anat. 2009;214:516–559. doi: 10.1111/j.1469-7580.2009.01066.x. PubMed DOI PMC

Fraser R.D.B., MacRae T.P., Rogers G.E. In: Keratins: Their Composition, Structure, and Biosyntahesis. Charles C., editor. Thomas; Springfield, IL, USA: 1972.

Moll R., Franke W.W., Schiller D.L., Geiger B., Krepler R. The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982;31:11–24. doi: 10.1016/0092-8674(82)90400-7. PubMed DOI

Schweizer J., Bowden P.E., Coulombe P.A., Langbein L., Lane E.B., Magin T.M., Maltais L., Omary M.B., Parry D.A.D., Rogers M.A., et al. New consensus nomenclature for mammalian keratins. J. Cell Biol. 2006;174:169–174. doi: 10.1083/jcb.200603161. PubMed DOI PMC

Eisenberg D. The discovery of the structural features of proteins alpha-helix and beta-sheet, the principal. Proc. Natl. Acad. Sci. USA. 2003;100:11207–11210. doi: 10.1073/pnas.2034522100. PubMed DOI PMC

Rafik M.E., Doucet J., Briki F. The intermediate filament architecture as determined by X-ray diffraction modeling of hard α-keratin. Biophys. J. 2004;86:3893–3904. doi: 10.1529/biophysj.103.034694. PubMed DOI PMC

Goddard D.R., Michaelis L.J. Derivatives of Keratin. J. Biol. Chem. 1935;112:361–371.

Rivett D.E., Ward S.W., Belkin L.M., Ramshaw J.A.M., Wilshire J.F.K. The Lennox Legacy. CSIRO Publishing; Collingwood, Australia: 1996. Keratin and Wool Research.

Crewther W.G., Fraser R.D.B., Lennox F.G., Lindley H. The Chemistry of Keratins. In: Anfinsen C.B., Anson M.L., Edsall J.T., Richards F.M., editors. Advances in Protein Chemistry. Volume 20. Academic Press; Cambridge, MA, USA: 1965. pp. 191–346. PubMed

Jarman T., Light J. World Biotech Report. 1985. Prospects for novel biomaterials development; p. 505.

Brown C.H. Keratins in Invertebrates. Nature. 1950;166:439. doi: 10.1038/166439a0. PubMed DOI

Makar I.A., Havryliak V.V., Sedilo H.M. Genetic and biochemical aspects of keratin synthesis by hair follicles. Tsitologiia I Genetika. 2007;41:75–79. doi: 10.3103/S0095452707010094. PubMed DOI

Fuchs E. Evolution and Complexity of the Genes Encoding the Keratins of Human Epidermal Cells. J. Investig. Dermatol. 1983;81:S141–S144. doi: 10.1111/1523-1747.ep12540922. PubMed DOI

Steinert P.M., Parry D.A.D., Racoosin E.L., Idler W.W., Steven A.C., Trus B.L., Roop D.R. The complete cDNA and deduced amino acid sequence of a type II mouse epidermal keratin of 60,000 Da: Analysis of sequence differences between type I and type II keratins. Proc. Natl. Acad. Sci. USA. 1984;81:5709–5713. doi: 10.1073/pnas.81.18.5709. PubMed DOI PMC

Coulombe P.A., Omary M.B. Hard and soft principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. 2002;14:110–122. doi: 10.1016/S0955-0674(01)00301-5. PubMed DOI

Coulombe P.A., Bousquet O., Ma L., Yamada S., Wirtz D. The ins and outs of intermediate filament organization. Trends Cell Biol. 2000;10:420–428. doi: 10.1016/S0962-8924(00)01828-6. PubMed DOI

Rouse J.G., Van Dyke M.E. A review of keratin-based biomaterials for biomedical applications. Materials. 2010;3:999–1014. doi: 10.3390/ma3020999. DOI

Hashimoto K., Mizuguchi R., Tanaka K., Dorman M. Palmoplantar keratoderma Voerner with composite keratohyalin granules Studies on keratinization parameters and ultrastructures. J. Dermatol. 2000;27:1–9. doi: 10.1111/j.1346-8138.2000.tb02108.x. PubMed DOI

Strasser B., Mlitz V., Hermann M., Tschachler E., Eckhart L. Convergent evolution of cysteine-rich proteins in feathers and hair. BMC Evol. Biol. 2015;15:82. doi: 10.1186/s12862-015-0360-y. PubMed DOI PMC

Strelkov S.V., Herrmann H., Aebi U. Molecular architecture of intermediate filaments. BioEssays. 2003;25:243–251. doi: 10.1002/bies.10246. PubMed DOI

Kreplak L., Bär H., Leterrier J.F., Herrmann H., Aebi U. Exploring the mechanical behavior of single intermediate filaments. J. Mol. Biol. 2005;354:569–577. doi: 10.1016/j.jmb.2005.09.092. PubMed DOI

Fudge D.S., Gosline J.M. Molecular design of the α–keratin composite: Insights from a matrix–free model, hagfish slime threads. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004;271:291–299. doi: 10.1098/rspb.2003.2591. PubMed DOI PMC

Guthold M., Liu W., Sparks E.A., Jawerth L.M., Peng L., Falvo M., Superfine R., Hantgan R.R., Lord S.T. A Comparison of the Mechanical and Structural Properties of Fibrin Fibers with Other Protein Fibers. Cell Biochem. Biophys. 2007;49:165–181. doi: 10.1007/s12013-007-9001-4. PubMed DOI PMC

Hearle J.W.S. A critical review of the structural mechanics of wool and hair fibres. Int. J. Biol. Macromol. 2000;27:123–138. doi: 10.1016/S0141-8130(00)00116-1. PubMed DOI

Fraser R.D.B., Parry D.A.D. Molecular packing in the feather keratin filament. J. Struct. Biol. 2008;162:1–13. doi: 10.1016/j.jsb.2008.01.011. PubMed DOI

Lee C.-H., Kim M.-S., Chung B.M., Leahy D.J., Coulombe P.A. Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nat. Struct. Mol. Biol. 2012;19:707. doi: 10.1038/nsmb.2330. PubMed DOI PMC

Xiao X., Hu J., Gui X., Lu J., Luo H. Is biopolymer hair a multi-responsive smart material? Polym. Chem. 2017;8:283–294. doi: 10.1039/C6PY01283C. DOI

Zhan M., Wool R.P. Mechanical properties of chicken feather fibers. Polym. Compos. 2011;32:937–944. doi: 10.1002/pc.21112. DOI

Europe P. An Analysis of European Plastics Production, Demand and Waste Data. Plast. Fact. 2018:18–57.

Neufeld L., Stassen F., Sheppard R., Gilman T. The New Plastics Economy: Rethinking the Future of Plastics. In World Economic Forum; Colony, Switzerland: 2016.

Jambeck J.R., Geyer R., Wilcox C., Siegler T.R., Perryman M., Andrady A., Narayan R., Law K.L. Plastic waste inputs from land into the ocean. Science. 2015;347:768–771. doi: 10.1126/science.1260352. PubMed DOI

Cole M., Lindeque P., Halsband C., Galloway T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011;62:2588–2597. doi: 10.1016/j.marpolbul.2011.09.025. PubMed DOI

Weithmann N., Möller J.N., Löder M.G.J., Piehl S., Laforsch C., Freitag R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018;4:8060. doi: 10.1126/sciadv.aap8060. PubMed DOI PMC

Van Cauwenberghe L., Janssen C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014;193:65–70. doi: 10.1016/j.envpol.2014.06.010. PubMed DOI

Werlang P.O., Brandelli A. Characteriztion of a novel feather-degrading Bacillus sp. strain. Appl. Biochem. Biotechnol. 2005;120:71–79. doi: 10.1385/ABAB:120:1:71. PubMed DOI

Kanoksilapatham W., Intagun W. A Review: Biodegradation and Applications of Keratin Degrading Microorganisms and Keratinolytic Enzymes, Focusing on Thermophiles and Thermostable Serine Proteases. Am. J. Appl. Sci. 2017;14:1016–1023. doi: 10.3844/ajassp.2017.1016.1023. DOI

Korniłłowicz-Kowalska T., Bohacz J. Biodegradation of keratin waste: Theory and practical aspects. Waste Manag. 2011;31:1689–1701. doi: 10.1016/j.wasman.2011.03.024. PubMed DOI

Bohacz J. Biodegradation of feather waste keratin by a keratinolytic soil fungus of the genus Chrysosporium and statistical optimization of feather mass loss. World J. Microbiol. Biotechnol. 2016;33:13. doi: 10.1007/s11274-016-2177-2. PubMed DOI PMC

Govindarajan B., Nagarajan R., Senthilkumar P., Thangamani R., Noorthen A. Field study of Chicken feather waste open dumping on road sides of Tuticorin city, Tamilnadu, India. Int. J. Curr. Sci. Res. 2016;2:960–966.

Joardar J.C., Rahman M.M. Poultry feather waste management and effects on plant growth. Int. J. Recycl. Org. Waste Agric. 2018;7:183–188. doi: 10.1007/s40093-018-0204-z. DOI

Khosa M., Ullah A. A sustainable role of keratin biopolymer in green chemistry: A review. J Food Process. Beverages. 2013;1:8.

Scarfato P., Di Maio L., Incarnato L. Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. J. Appl. Polym. Sci. 2015;132:42597. doi: 10.1002/app.42597. DOI

Esparza Y., Bandara N., Ullah A., Wu J. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins. Mater. Sci. Eng. C. 2018;90:446–453. doi: 10.1016/j.msec.2018.04.067. PubMed DOI

Shavandi A., Silva T.H., Bekhit A.A., Bekhit A.E.D.A. Keratin: Dissolution, extraction and biomedical application. Biomater. Sci. 2017;5:1699–1735. doi: 10.1039/C7BM00411G. PubMed DOI

Hofmeier J. Horn-lime plastic masses from keratin substances. Ger. Pat. 1905;18:DE184915.

Shavandi A., Carne A., Bekhit A.A., Bekhit A.E.D.A. An improved method for solubilisation of wool keratin using peracetic acid. J. Environ. Chem. Eng. 2017;5:1977–1984. doi: 10.1016/j.jece.2017.03.043. DOI

Sinkiewicz I., Śliwińska A., Staroszczyk H., Kołodziejska I. Alternative Methods of Preparation of Soluble Keratin from Chicken Feathers. Waste Biomass Valoriz. 2017;8:1043–1048. doi: 10.1007/s12649-016-9678-y. DOI

Gupta A., Kamarudin N.B., Kee C.Y.G., Yunus R.B.M. Extraction of Keratin Protein from Chicken Feather. J. Chem. Chem. Eng. 2012:732–737.

Fujii T., Li D. Preparation and properties of protein films and particles from chicken feather. J. Biol. Macromol. 2008;8:48–55.

Xu W., Ke G., Wu J., Wang X. Modification of wool fiber using steam explosion. Eur. Polym. J. 2006;42:2168–2173. doi: 10.1016/j.eurpolymj.2006.03.026. DOI

Zhao W., Yang R., Zhang Y., Wu L. Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: High density steam flash-explosion. Green Chem. 2012;14:3352–3360. doi: 10.1039/c2gc36243k. DOI

Yu Z., Zhang B., Yu F., Xu G., Song A. A real explosion: The requirement of steam explosion pretreatment. Bioresour. Technol. 2012;121:335–341. doi: 10.1016/j.biortech.2012.06.055. PubMed DOI

Zhang Y., Zhao W., Yang R. Steam Flash Explosion Assisted Dissolution of Keratin from Feathers. ACS Sustain. Chem. Eng. 2015;3:2036–2042. doi: 10.1021/acssuschemeng.5b00310. DOI

Dupont J. On the solid, liquid and solution structural organization of imidazolium ionic liquids. J. Braz. Chem. Soc. 2004;15:341–350. doi: 10.1590/S0103-50532004000300002. DOI

Smith E.L., Abbott A.P., Ryder K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014;114:11060–11082. doi: 10.1021/cr300162p. PubMed DOI

Mahmood H., Moniruzzaman M., Yusup S., Welton T. Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials. Green Chem. 2017;19:2051–2075. doi: 10.1039/C7GC00318H. DOI

Li R., Wang D. Preparation of regenerated wool keratin films from wool keratin-ionic liquid solutions. J. Appl. Polym. Sci. 2013;127:2648–2653. doi: 10.1002/app.37527. DOI

Chen J., Vongsanga K., Wang X., Byrne N. What happens during natural protein fibre dissolution in ionic liquids. Materials. 2014;7:6158–6168. doi: 10.3390/ma7096158. PubMed DOI PMC

Wang Y.X., Cao X.J. Extracting keratin from chicken feathers by using a hydrophobic ionic liquid. Process Biochem. 2012;47:896–899. doi: 10.1016/j.procbio.2012.02.013. DOI

Ji Y., Chen J., Lv J., Li Z., Xing L., Ding S. Extraction of keratin with ionic liquids from poultry feather. Sep. Purif. Technol. 2014;132:577–583. doi: 10.1016/j.seppur.2014.05.049. DOI

Sun P., Liu Z.T., Liu Z.W. Particles from bird feather: A novel application of an ionic liquid and waste resource. J. Hazard. Mater. 2009;170:786–790. doi: 10.1016/j.jhazmat.2009.05.034. PubMed DOI

Zheng S., Nie Y., Zhang S., Zhang X., Wang L. Highly Efficient Dissolution of Wool Keratin by Dimethylphosphate Ionic Liquids. ACS Sustain. Chem. Eng. 2015;3:2925–2932. doi: 10.1021/acssuschemeng.5b00895. DOI

Idris A., Vijayaraghavan R., Rana U.A., Fredericks D., Patti A.F., MacFarlane D.R. Dissolution of feather keratin in ionic liquids. Green Chem. 2013;15:525–534. doi: 10.1039/c2gc36556a. DOI

Liu X., Nie Y., Meng X., Zhang Z., Zhang X., Zhang S. DBN-based ionic liquids with high capability for the dissolution of wool keratin. RSC Adv. 2017;7:1981–1988. doi: 10.1039/C6RA26057H. DOI

Azmi N.A., Idris A., Yusof N.S.M. Ultrasonic technology for value added products from feather keratin. Ultrason. Sonochem. 2018;47:99–107. doi: 10.1016/j.ultsonch.2018.04.016. PubMed DOI

Jiang Z., Yuan J., Wang P., Fan X., Xu J., Wang Q., Zhang L. Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea. Int. J. Biol. Macromol. 2018;119:423–430. doi: 10.1016/j.ijbiomac.2018.07.161. PubMed DOI

Moore K.E., Mangos D.N., Slattery A.D., Raston C.L., Boulos R.A. Wool deconstruction using a benign eutectic melt. RSC Adv. 2016;6:20095–20101. doi: 10.1039/C5RA26516A. DOI

Wang D., Tang R.C. Dissolution of wool in the choline chloride/oxalic acid deep eutectic solvent. Mater. Lett. 2018;231:217–220. doi: 10.1016/j.matlet.2018.08.056. DOI

Wang D., Yang X.H., Tang R.C., Yao F. Extraction of keratin from rabbit hair by a deep eutectic solvent and its characterization. Polymers. 2018;10:993. doi: 10.3390/polym10090993. PubMed DOI PMC

Hashim U., Arshad M.K.M., Lakshmipriya T., Chen Y., Tang T.-H., Gopinath S.C.B., Ruslinda A.R., Anbu P. Biotechnological Aspects and Perspective of Microbial Keratinase Production. Biomed Res. Int. 2015;2015:1–10. PubMed PMC

Martinez-Hernandez A.L., Velasco-Santos C. Keratin: Structure, Properties and Applications. Nova Science Publishers; Hauppauge, NY, USA: 2012. [(accessed on 21 December 2019)]. 17-Keratin Fibers from Chicken Feathers: Structure and Advances in Polymer Composites. Available online: http://www.novapublishers.org/catalog/product_info.php?products_id=32840.

Karthikeyan R., Balaji S., Sehgal P.K. Industrial applications of keratins—A review. J. Sci. Ind. Res India. 2007;66:710–715.

Norell M., Ji Q., Gao K., Yuan C., Zhao Y., Wang L. Modern feathers on a non-avian dinosaur. Nature. 2002;416:36–37. doi: 10.1038/416036a. PubMed DOI

Ullah A., Vasanthan T., Bressler D., Elias A.L., Wu J. Bioplastics from feather quill. Biomacromolecules. 2011;12:3826–3832. doi: 10.1021/bm201112n. PubMed DOI

Wang B., Yang W., McKittrick J., Meyers M.A. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 2016;76:229–318. doi: 10.1016/j.pmatsci.2015.06.001. DOI

Sullivan T.N., Pissarenko A., Herrera S.A., Kisailus D., Lubarda V.A., Meyers M.A. A lightweight, biological structure with tailored stiffness: The feather vane. Acta Biomater. 2016;41:27–39. doi: 10.1016/j.actbio.2016.05.022. PubMed DOI

Sullivan T.N., Wang B., Espinosa H.D., Meyers M.A. Extreme lightweight structures: Avian feathers and bones. Mater. Today. 2017;20:377–391. doi: 10.1016/j.mattod.2017.02.004. DOI

Fraser R.D., Roe H.Z., Lipson B. The Structure of a Merino Wool Fibre. [(accessed on 6 February 2019)]; Available online: http://www.scienceimage.csiro.au/library/textile/i/7663/the-structure-of-a-merino-wool-fibre/

DeFrates K., Moore R., Borgesi J., Lin G., Mulderig T., Beachley V., Hu X. Protein-Based Fiber Materials in Medicine: A Review. Nanomaterials. 2018;8:457. doi: 10.3390/nano8070457. PubMed DOI PMC

Jao D., Xue Y., Medina J., Hu X. Protein-based drug-delivery materials. Materials. 2017;10:517. doi: 10.3390/ma10050517. PubMed DOI PMC

Wang R.-M., LI F.-Y., Wang X.-J., LI Q.-F., He Y.-F., Wang Y.-B. The Application of Feather Keratin and Its Derivatives In Treatment Of Potato Starch Wastewater. Funct. Mater. Lett. 2010;3:213–216. doi: 10.1142/S1793604710001275. DOI

Khosa M.A., Wu J., Ullah A. Chemical modification, characterization, and application of chicken feathers as novel biosorbents. RSC Adv. 2013;3:20800–20810. doi: 10.1039/c3ra43787f. DOI

Latha P.P., Singh R.K., Kukrety A., Saxena R.C., Bhatt M., Jain S.L. Poultry Chicken Feather Derived Biodegradable Multifunctional Additives for Lubricating Formulations. ACS Sustain. Chem. Eng. 2016;4:999–1005. doi: 10.1021/acssuschemeng.5b01071. DOI

Torculas M., Medina J., Xue W., Hu X. Protein-Based Bioelectronics. ACS Biomater. Sci. Eng. 2016;2:1211–1223. doi: 10.1021/acsbiomaterials.6b00119. PubMed DOI

Ikkai F., Naito S. Dynamic light scattering and circular dichroism studies on heat-induced gelation of hard-keratin protein aqueous solutions. Biomacromolecules. 2002;3:482–487. doi: 10.1021/bm010160i. PubMed DOI

Xu H., Cai S., Xu L., Yang Y. Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir. 2014;30:8461–8470. doi: 10.1021/la500768b. PubMed DOI

Lee H., Noh K., Lee S.C., Kwon I.K., Han D.W., Lee I.S., Hwang Y.S. Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng. Regen. Med. 2014;11:255–265. doi: 10.1007/s13770-014-0029-4. DOI

Barone J.R., Schmidt W.F., Gregoire N.T. Extrusion of feather keratin. J. Appl. Polym. Sci. 2006;100:1432–1442. doi: 10.1002/app.23501. DOI

Drack M., Wimmer R. Woolrock-a material for technical use consisting of keratin. J. Mater. Sci. 2007;42:6183–6187. doi: 10.1007/s10853-006-1156-7. DOI

Tanabe T., Okitsu N., Tachibana A., Yamauchi K. Preparation and characterization of keratin–chitosan composite film. Biomaterials. 2002;23:817–825. doi: 10.1016/S0142-9612(01)00187-9. PubMed DOI

Vasconcelos A., Freddi G., Cavaco-Paulo A. Biodegradable Materials Based on Silk Fibroin and Keratin. Biomacromolecules. 2008;9:1299–1305. doi: 10.1021/bm7012789. PubMed DOI

Tonin C., Aluigi A., Vineis C., Varesano A., Montarsolo A., Ferrero F. Thermal and structural characterization of poly(ethylene-oxide)/keratin blend films. J. Therm. Anal. Calorim. 2007;89:601–608. doi: 10.1007/s10973-006-7557-7. DOI

Zoccola M., Montarsolo A., Aluigi A., Varesano A., Vineis C., Tonin C. Electrospinning of polyamide 6/modified-keratin blends. E-Polymers. 2007;7:1–19. doi: 10.1515/epoly.2007.7.1.1204. DOI

Council N.R. In: Utilization of Chicken Feathers as Filling Materials. Kennedy S.J., Schubert A., Weiner L.I., editors. National Academies Press; Washington, DC, USA: 1956.

Du Pisani J.A. Sustainable development—Historical roots of the concept. Environ. Sci. 2006;3:83–96. doi: 10.1080/15693430600688831. DOI

Utracki L.A., Mukhopadhyay P., Gupta R.K. Polymer Blends: Introduction. In: Utracki L.A., Wilkie C.A., editors. Polymer Blends Handbook. Springer; Dordrecht, The Netherlands: 2014. pp. 3–170.

Posch W. 3-Polyolefins. In: Kutz M., editor. Applied Plastics Engineering Handbook. William Andrew Publishing; Oxford, UK: 2011. pp. 23–48. Plastics Design Library.

Sauter D.W., Taoufik M., Boisson C. Polyolefins, a success story. Polymers. 2017;9:1–13. PubMed PMC

Sam S.T., Nuradibah M.A., Ismail H., Noriman N.Z., Ragunathan S. Recent Advances in Polyolefins/Natural Polymer Blends Used for Packaging Application. Polym. Plast. Technol. Eng. 2014;53:631–644. doi: 10.1080/03602559.2013.866247. DOI

Shavandi A., Ali M.A. Keratin based thermoplastic biocomposites: A review. Rev. Environ. Sci. Biotechnol. 2019;18:299–316. doi: 10.1007/s11157-019-09497-x. DOI

Bullions T.A., Gillespie R.A., Price-O’Brien J., Loos A.C. The effect of maleic anhydride modified polypropylene on the mechanical properties of feather fiber, kraft pulp, polypropylene composites. J. Appl. Polym. Sci. 2004;92:3771–3783. doi: 10.1002/app.20369. DOI

Barone J.R., Gregoire N.T. Characterisation of fibre–polymer interactions and transcrystallinity in short keratin fibre–polypropylene composites. Plast. Rubber Compos. 2014;35:287–293. doi: 10.1179/174328906X146478. DOI

Barone J.R., Schmidt W.F. Polyethylene reinforced with keratin fibers obtained from chicken feathers. Compos. Sci. Technol. 2005;65:173–181. doi: 10.1016/j.compscitech.2004.06.011. DOI

Kim N.K., Bhattacharyya D. Development of fire resistant wool polymer composites: Mechanical performance and fire simulation with design perspectives. Mater. Des. 2016;106:391–403. doi: 10.1016/j.matdes.2016.06.005. DOI

Huda M.S., Schmidt W.F., Misra M., Drzal L.T. Effect of fiber surface treatment of poultry feather fibers on the properties of their polymer matrix composites. J. Appl. Polym. Sci. 2013;128:1117–1124. doi: 10.1002/app.38306. DOI

Wang H., Jin X.-Y., Wu H.-B. Adsorption and desorption properties of modified feather and feather/PP melt-blown filter cartridge of lead ion (Pb 2+) J. Appl. Polym. Sci. 2014;132:41555.

Amieva E.J.-C., Velasco-Santos C., Martínez-Hernández A.L., Rivera-Armenta J.L., Mendoza-Martínez A.M., Castaño V.M. Composites from chicken feathers quill and recycled polypropylene. J. Compos. Mater. 2015;49:275–283. doi: 10.1177/0021998313518359. DOI

Patnam P.L., Ray S.S., Chatterjee A.K., Jain S.L. Self-driven graft polymerization of vinyl monomers on poultry chicken feathers in the absence of initiator/catalyst. J. Appl. Polym. Sci. 2017;134:1–9. doi: 10.1002/app.44645. DOI

Bailey F.E., Koleske J.V. Properties of Poly Ethylene Oxide. In: Bailey F.E., Koleske J.V., editors. Poly Ethylene Oxide. Academic Press; Cambridge, MA, USA: 1976. pp. 105–149. Chapter 6.

Veronese F.M., Pasut G. PEGylation, successful approach. Drug Discov. Today. 2005;10:1451–1458. doi: 10.1016/S1359-6446(05)03575-0. PubMed DOI

Hutanu D., Frishberg M.D., Guo L., Darie C.C. Recent Applications of Polyethylene Glycols (PEGs) and PEG Derivatives. Mod. Chem. Appl. 2014;2:1000132. doi: 10.4172/2329-6798.1000132. DOI

Varesano A., Aluigi A., Vineis C., Tonin C. Study on the shear viscosity behavior of keratin/PEO blends for nanofibre electrospinning. J. Polym. Sci. Part B Polym. Phys. 2008;46:1193–1201. doi: 10.1002/polb.21452. DOI

Aluigi A., Vineis C., Varesano A., Mazzuchetti G., Ferrero F., Tonin C. Structure and properties of keratin/PEO blend nanofibres. Eur. Polym. J. 2008;44:2465–2475. doi: 10.1016/j.eurpolymj.2008.06.004. DOI

Aluigi A., Varesano A., Montarsolo A., Vineis C., Ferrero F., Mazzuchetti G., Tonin C. Electrospinning of keratin/poly (ethylene oxide) blend nanofibers. J. Appl. Polym. Sci. 2007;104:863–870. doi: 10.1002/app.25623. DOI

Ma H., Shen J., Cao J., Wang D., Yue B., Mao Z., Wu W., Zhang H. Fabrication of wool keratin/polyethylene oxide nano-membrane from wool fabric waste. J. Clean. Prod. 2017;161:357–361. doi: 10.1016/j.jclepro.2017.05.121. DOI

Fan J., Lei T.-D., Li J., Zhai P.-Y., Wang Y.-H., Cao F.-Y., Liu Y. High protein content keratin/poly (ethylene oxide) nanofibers crosslinked in oxygen atmosphere and its cell culture. Mater. Des. 2016;104:60–67. doi: 10.1016/j.matdes.2016.05.022. DOI

Grkovic M., Stojanovic D.B., Kojovic A., Strnad S., Kreze T., Aleksic R., Uskokovic P.S. Keratin-polyethylene oxide bio-nanocomposites reinforced with ultrasonically functionalized graphene. RSC Adv. 2015;5:91280–91287. doi: 10.1039/C5RA12402F. DOI

Yue K., Liu Y., Byambaa B., Singh V., Liu W., Li X., Sun Y., Zhang Y.S., Tamayol A., Zhang P., et al. Visible light crosslinkable human hair keratin hydrogels. Bioeng. Transl. Med. 2018;3:37–48. doi: 10.1002/btm2.10077. PubMed DOI PMC

Yemul O., Imae T. Synthesis and characterization of poly (ethyleneimine) dendrimers. Colloid Polym. Sci. 2008;286:747–752. doi: 10.1007/s00396-007-1830-6. DOI

Kuzuhara A., Hori T. New Method of Dyeing Keratin Fibers Using Poly(ethylene imine) and Its Coloring Mechanism. J. Appl. Polym. Sci. 2003;90:3806–3810. doi: 10.1002/app.12986. DOI

Kuzuhara A. Influence of urea on the coloring ability of a low-temperature coloring method of keratin fibers using polyethyleneimine. J. Appl. Polym. Sci. 2004;91:3827–3834. doi: 10.1002/app.13582. DOI

Kuzuhara A., Hori T. Diffusion behavior of poly(ethylene imine) into keratin fibers using microspectrophotometry. J. Appl. Polym. Sci. 2005;97:65–71. doi: 10.1002/app.21731. DOI

Penzel E., Ballard N., Asua J.M. Ullmann’s Encyclopedia of Industrial Chemistry. American Cancer Society; New York, NY, USA: 2018. Polyacrylates; pp. 1–20.

Wichterle O., LÍM D. Hydrophilic Gels for Biological Use. Nature. 1960;185:117–118. doi: 10.1038/185117a0. DOI

Paul R., Genescà E. 8-The use of enzymatic techniques in the finishing of technical textiles. In: Gulrajani M.L., editor. Advances in the Dyeing and Finishing of Technical Textiles. Woodhead Publishing; Cambridge, UK: 2013. pp. 177–198. (Woodhead Publishing Series in Textiles).

Hearle J.W.S. Textile Fibers: A Comparative Overview. In: Buschow K.H.J., Cahn R.W., Flemings M.C., Ilschner B., Kramer E.J., Mahajan S., Veyssière P., editors. Encyclopedia of Materials: Science and Technology. Elsevier; Oxford, UK: 2001. pp. 9100–9116.

Yan Y. 2-Developments in fibers for technical nonwovens. In: Kellie G., editor. Advances in Technical Nonwovens. Woodhead Publishing; Sawston, UK: 2016. pp. 19–96. (Woodhead Publishing Series in Textiles).

Hennecke D., Bauer A., Herrchen M., Wischerhoff E., Gores F. Cationic polyacrylamide copolymers (PAMs): Environmental half life determination in sludge-treated soil. Environ. Sci. Eur. 2018;30:16. doi: 10.1186/s12302-018-0143-3. PubMed DOI PMC

Arai K., Negishi M., Okabe T. Infrared spectroscopy of graft polymers separated from graft copolymers of wool and silk with methyl methacrylate. J. Appl. Polym. Sci. 1968;12:2585–2596. doi: 10.1002/app.1968.070121202. DOI

Leeder J.D., Pratt A.J., Watt I.C. Wool–polymer systems: Effect of vinyl polymers on water absorption. J. Appl. Polym. Sci. 1967;11:1649–1659. doi: 10.1002/app.1967.070110905. DOI

Varma D.S., Sadhir R.K. Radiation-Induced graft copolymerization of methyl methacrylate on natural and modified wool. II. Sorption behavior. J. Appl. Polym. Sci. 1979;23:393–400. doi: 10.1002/app.1979.070230209. DOI

Niezette J. Stress-strain behaviour of graft copolymers of methyl methacrylate and natural wool fibres. Eur. Polym. J. 1981;17:281–283. doi: 10.1016/0014-3057(81)90166-X. DOI

Bresee R.R., Annis P.A., Reagan B.M. Localization of methyl acrylate graft copolymerization in exposed cortex of abraided wool fibers. J. Appl. Polym. Sci. 1986;31:2839–2843. doi: 10.1002/app.1986.070310835. DOI

Arai K., Negishi M., Suda T., Arai S. Grafting onto wool. III. Relationship between alpha- and beta-forms in wool keratin of grafted fibers. J. Appl. Polym. Sci. 1973;17:483–502. doi: 10.1002/app.1973.070170213. DOI

Varma D.S., Sadhir R.K. Radiation-induced graft copolymerization of methyl methacrylate on natural and modified wool. V. Crystalline and morphological structure. J. Appl. Polym. Sci. 1980;25:487–498. doi: 10.1002/app.1980.070250314. DOI

Elangovan V.J., Saccubai S. Chemical and mechanical properties of methyl methacrylate-grafted wool fiber. J. Appl. Polym. Sci. 1992;44:2179–2183. doi: 10.1002/app.1992.070441214. DOI

Elangovan V.J., Saccubai S. Thermal properties of wool-g-poly (methyl methacrylate) copolymers. J. Appl. Polym. Sci. 1992;45:1823–1830. doi: 10.1002/app.1992.070451016. DOI

Xu W., Bao J., Zhang J., Shi M. Microwave irradiation graft copolymerization of hydroxyethyl methacrylate onto wool fabrics. J. Appl. Polym. Sci. 1998;70:2343–2347. doi: 10.1002/(SICI)1097-4628(19981219)70:12<2343::AID-APP5>3.0.CO;2-D. DOI

Meng X.Y. Chemical and mechanical properties of butyl methacrylate grafted wool fiber. J. Appl. Polym. Sci. 2004;91:3813–3817. doi: 10.1002/app.13567. DOI

Tsukada M., Shiozaki H., Freddi G., Crighton J.S. Graft copolymerization of benzyl methacrylate onto wool fibers. J. Appl. Polym. Sci. 1997;64:343–350. doi: 10.1002/(SICI)1097-4628(19970411)64:2<343::AID-APP15>3.0.CO;2-1. DOI

Zhang Y., Zhang B., Shan Z. Preparation of sound-insulating material based on discarded cow hair. J. Appl. Polym. Sci. 2018;135:46332. doi: 10.1002/app.46332. DOI

Martínez-Hernández A.L., Velasco-Santos C., De Icaza M., Castaño V.M. Grafting of methyl methacrylate onto natural keratin. E-Polymers. 2003;3:1–11. doi: 10.1515/epoly.2003.3.1.209. DOI

Shi Z., Reddy N., Hou X., Yang Y. Tensile properties of thermoplastic feather films grafted with different methacrylates. ACS Sustain. Chem. Eng. 2014;2:1849–1856. doi: 10.1021/sc500201q. DOI

Schaller J., Miyamoto T., Shimamura K., Inagaki H. Membranes prepared from keratin–polyacrylonitrile graft copolymers. J. Appl. Polym. Sci. 1980;25:783–794. doi: 10.1002/app.1980.070250507. DOI

Giri G., Sahoo P.K., Samal R.K. Graft copolymerization onto wool fibers: Grafting of acrylamide onto wool fibers initiated by potassium monopersulphate/Fe (II) redox system. J. Appl. Polym. Sci. 1990;40:471–483. doi: 10.1002/app.1990.070400314. DOI

Shavandi A., Ali M.A. Graft polymerization onto wool fibre for improved functionality. Prog. Org. Coat. 2019;130:182–199. doi: 10.1016/j.porgcoat.2019.01.054. DOI

Yu J., Sun L., Ma C., Qiao Y., Yao H. Thermal degradation of PVC: A review. Waste Manag. 2016;48:300–314. doi: 10.1016/j.wasman.2015.11.041. PubMed DOI

Wagoner J.K. Toxicity of vinyl chloride and poly (vinyl chloride): A critical review. Environ. Health Perspect. 1983;52:61–66. doi: 10.1289/ehp.835261. PubMed DOI PMC

Folarin O.M., Sadiku E.R. Thermal stabilizers for poly (vinyl chloride): A review. Int. J. Phys. Sci. 2011;6:4323–4330.

Yngve V. Vinyl Resin Phonograph Record. No. 2,307,180. U.S. Patent. 1943 Dec 7;

Lucio D.S.V., Rivera-Armenta J.L., Rivas-Orta V., Díaz-Zavala N.P., Páramo-García U., Rivas N.V.G., Cinco M.Y.C. Handbook of Composites from Renewable Materials. John Wiley & Sons; Hoboken, NJ, USA: 2017. Manufacturing of Composites from Chicken Feathers and Polyvinyl Chloride (PVC) pp. 159–174.

Akhlaghi S., Sharif A., Kalaee M., Manafi M. Miscibility and thermal behavior of poly (vinyl chloride)/feather keratin blends. J. Appl. Polym. Sci. 2011;121:3252–3261. doi: 10.1002/app.33869. DOI

Aslam M., Kalyar M.A., Raza Z.A. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym. Eng. Sci. 2018;58:2119–2132. doi: 10.1002/pen.24855. DOI

Baker M.I., Walsh S.P., Schwartz Z., Boyan B.D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012;100:1451–1457. doi: 10.1002/jbm.b.32694. PubMed DOI

DeMerlis C., Schoneker D. Review of the oral toxicity of polyvinyl alcohol (PVA) Food Chem. Toxicol. 2003;41:319–326. doi: 10.1016/S0278-6915(02)00258-2. PubMed DOI

Katoh K., Shibayama M., Tanabe T., Yamauchi K. Preparation and properties of keratin-poly (vinyl alcohol) blend fiber. J. Appl. Polym. Sci. 2004;91:756–762. doi: 10.1002/app.13236. DOI

Liu R., Li L., Liu S., Li S., Zhu X., Yi M., Liao X. Structure and properties of wool keratin/poly (vinyl alcohol) blended fiber. Adv. Polym. Technol. 2018;37:2756–2762. doi: 10.1002/adv.21948. DOI

Esparza Y., Ullah A., Boluk Y., Wu J. Preparation and characterization of thermally crosslinked poly (vinyl alcohol)/feather keratin nanofiber scaffolds. Mater. Des. 2017;133:1–9. doi: 10.1016/j.matdes.2017.07.052. DOI

Ding J., Chen M., Chen W., He M., Zhou X., Yin G. Vapor-Assisted Crosslinking of a FK/PVA/PEO Nanofiber Membrane. Polymers. 2018;10:747. doi: 10.3390/polym10070747. PubMed DOI PMC

Kadirvelu K., Fathima N.N. Self-assembly of keratin peptides: Its implication on the performance of electrospun PVA nanofibers. Sci. Rep. 2016;6:36558. doi: 10.1038/srep36558. PubMed DOI PMC

El-Kheir A.A., Mowafi S., Taleb M.A., El-Sayed H. Preparation and Characterization of Keratin-Polyvinyl Alcohol Composite Film. Egypt. J. Chem. 2012;55:491–507.

Dou Y., Zhang B., He M., Yin G., Cui Y. Preparation and Physicochemical Properties of Dialdehyde Starch Crosslinked Feather Keratin/PVA Composite Films. J. Macromol. Sci. Part A. 2014;51:1009–1015. doi: 10.1080/10601325.2014.967108. DOI

Dou Y., Zhang B., He M., Yin G., Cui Y., Savina I. Keratin/Polyvinyl Alcohol Blend Films Cross-Linked by Dialdehyde Starch and Their Potential Application for Drug Release. Polymers. 2015;7:580–591. doi: 10.3390/polym7030580. DOI

Chen X., Wu S., Yi M., Ge J., Yin G., Li X. Preparation and Physicochemical Properties of Blend Films of Feather Keratin and Poly (vinyl alcohol) Compatibilized by Tris (hydroxymethyl) aminomethane. Polymers. 2018;10:1054. doi: 10.3390/polym10101054. PubMed DOI PMC

Gabriel S., Maass T.A. Ueber ɛ-Amidocapronsäure. Berichte der Dtsch. Chem. Gesellschaft. 1899;32:1266–1272. doi: 10.1002/cber.189903201205. DOI

Matthies P., Seydl W.F. History and Development of Nylon 6. In: Seymour R.B., Kirshenbaum G.S., editors. High Performance Polymers: Their Origin and Development. Springer; Dordrecht, The Netherlands: 1986. pp. 39–53.

Vlasveld D.P.N., Groenewold J., Bersee H.E.N., Picken S.J. Moisture absorption in polyamide-6 silicate nanocomposites and its influence on the mechanical properties. Polymer. 2005;46:12567–12576. doi: 10.1016/j.polymer.2005.10.096. DOI

Aluigi A., Tonetti C., Vineis C., Tonin C., Mazzuchetti G. Adsorption of copper (II) ions by keratin/PA6 blend nanofibres. Eur. Polym. J. 2011;47:1756–1764. doi: 10.1016/j.eurpolymj.2011.06.009. DOI

Aluigi A., Varesano A., Vineis C., Del Rio A. Electrospinning of immiscible systems: The wool keratin/polyamide-6 case study. Mater. Des. 2017;127:144–153. doi: 10.1016/j.matdes.2017.04.045. DOI

Akhlaghi S., Sharif A., Kalaee M., Nouri A., Manafi M. Morphology, nanomechanical and thermodynamic surface characteristics of nylon 6/feather keratin blend films: An atomic force microscopy investigation. Polym. Int. 2012;61:646–656. doi: 10.1002/pi.3227. DOI

Natta F.J., van Hill J.W., Carothers W.H. Studies of Polymerization and Ring Formation. XXIII. 1 ε-Caprolactone and its Polymers. J. Am. Chem. Soc. 1934;56:455–457. doi: 10.1021/ja01317a053. DOI

Guarino V., Gentile G., Sorrentino L., Ambrosio L. Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2017. Polycaprolactone: Synthesis, Properties, and Applications; pp. 1–36.

Woodruff M.A., Hutmacher D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35:1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002. DOI

Zhu H., Li R., Wu X., Chen K., Che J. Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting. Eur. Polym. J. 2017;86:154–161. doi: 10.1016/j.eurpolymj.2016.11.023. DOI

Wu P., Dai X., Chen K., Li R., Xing Y. Fabrication of regenerated wool keratin/polycaprolactone nanofiber membranes for cell culture. Int. J. Biol. Macromol. 2018;114:1168–1173. doi: 10.1016/j.ijbiomac.2018.03.157. PubMed DOI

Edwards A., Jarvis D., Hopkins T., Pixley S., Bhattarai N. Poly (ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015;103:21–30. doi: 10.1002/jbm.b.33172. PubMed DOI

Boakye M., Rijal N., Adhikari U., Bhattarai N. Fabrication and Characterization of Electrospun PCL-MgO-Keratin-Based Composite Nanofibers for Biomedical Applications. Materials. 2015;8:4080–4095. doi: 10.3390/ma8074080. PubMed DOI PMC

Zhao X., Lui Y.S., Choo C.K.C., Sow W.T., Huang C.L., Ng K.W., Tan L.P., Loo J.S.C. Calcium phosphate coated Keratin–PCL scaffolds for potential bone tissue regeneration. Mater. Sci. Eng. C. 2015;49:746–753. doi: 10.1016/j.msec.2015.01.084. PubMed DOI

Jamshidian M., Tehrany E.A., Imran M., Jacquot M., Desobry S. Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf. 2010;9:552–571. doi: 10.1111/j.1541-4337.2010.00126.x. PubMed DOI

Södergård A., Stolt M. Poly Lactic Acid. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2010. Industrial Production of High Molecular Weight Poly (Lactic Acid) pp. 27–41.

Liu Z., Wang Y., Wu B., Cui C., Guo Y., Yan C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 2019;102:2877–2889. doi: 10.1007/s00170-019-03332-x. DOI

Fortunati E., Aluigi A., Armentano I., Morena F., Emiliani C., Martino S., Santulli C., Torre L., Kenny J.M., Puglia D. Keratins extracted from Merino wool and Brown Alpaca fibres: Thermal, mechanical and biological properties of PLLA based biocomposites. Mater. Sci. Eng. C. 2015;47:394–406. doi: 10.1016/j.msec.2014.11.007. PubMed DOI

Puglia D., Ceccolini R., Fortunati E., Armentano I., Morena F., Martino S., Aluigi A., Torre L., Kenny J.M. Effect of processing techniques on the 3D microstructure of poly (l-lactic acid) scaffolds reinforced with wool keratin from different sources. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.42890. DOI

Li J.-S., Li Y., Liu X., Zhang J., Zhang Y. Strategy to introduce an hydroxyapatite–keratin nanocomposite into a fibrous membrane for bone tissue engineering. J. Mater. Chem. B. 2013;1:432–437. doi: 10.1039/C2TB00460G. PubMed DOI

Spiridon I., Paduraru O.M., Zaltariov M.F., Darie R.N. Influence of Keratin on Polylactic Acid/Chitosan Composite Properties. Behavior upon Accelerated Weathering. Ind. Eng. Chem. Res. 2013;52:9822–9833. doi: 10.1021/ie400848t. DOI

Aranberri I., Montes S., Azcune I., Rekondo A., Grande H.-J. Fully Biodegradable Biocomposites with High Chicken Feather Content. Polymers. 2017;9:593. doi: 10.3390/polym9110593. PubMed DOI PMC

Cañavate J., Aymerich J., Garrido N., Colom X., Macanás J., Molins G., Álvarez M., Carrillo F. Properties and optimal manufacturing conditions of chicken feathers/poly (lactic acid) biocomposites. J. Compos. Mater. 2016;50:1671–1683. doi: 10.1177/0021998315595534. DOI

Sanchez-Olivares G., Sanchez-Solis A., Calderas F., Alongi J. Keratin fibres derived from tannery industry wastes for flame retarded PLA composites. Polym. Degrad. Stab. 2017;140:42–54. doi: 10.1016/j.polymdegradstab.2017.04.011. DOI

Koller M., Atlić A., Dias M., Reiterer A., Braunegg G. Microbial PHA Production from Waste Raw Materials. In: Chen G.G.-Q., editor. Plastics from Bacteria: Natural Functions and Applications. Springer; Berlin/Heidelberg, Germany: 2010. pp. 85–119.

Raza Z.A., Abid S., Banat I.M. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 2018;126:45–56. doi: 10.1016/j.ibiod.2017.10.001. DOI

Li Z., Yang J., Loh X.J. Polyhydroxyalkanoates: Opening doors for a sustainable future. NPG Asia Mater. 2016;8:e265. doi: 10.1038/am.2016.48. DOI

Yuan J., Xing Z.-C., Park S.-W., Geng J., Kang I.-K., Yuan J., Shen J., Meng W., Shim K.-J., Han I.-S., et al. Fabrication of PHBV/keratin composite nanofibrous mats for biomedical applications. Macromol. Res. 2009;17:850–855. doi: 10.1007/BF03218625. DOI

Wang Y., Zhang W., Yuan J., Shen J. Differences in cytocompatibility between collagen, gelatin and keratin. Mater. Sci. Eng. C. 2016;59:30–34. doi: 10.1016/j.msec.2015.09.093. PubMed DOI

Pardo-Ibáñez P., Lopez-Rubio A., Martínez-Sanz M., Cabedo L., Lagaron J.M. Keratin-polyhydroxyalkanoate melt-compounded composites with improved barrier properties of interest in food packaging applications. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.39947. DOI

Fabra M.J., Pardo P., Martinez-Sanz M., Lopez-Rubio A. Combining polyhydroxyalkanoates with nanokeratin to develop novel biopackaging structures. J. Appl. Polym. Sci. 2016;133:42695. doi: 10.1002/app.42695. DOI

Datta J., Kasprzyk P. Thermoplastic polyurethanes derived from petrochemical or renewable resources: A comprehensive review. Polym. Eng. Sci. 2018;58:E14–E35. doi: 10.1002/pen.24633. DOI

Xiao J., Gao Y. The manufacture of 3D printing of medical grade TPU. Prog. Addit. Manuf. 2017;2:117–123. doi: 10.1007/s40964-017-0023-1. DOI

Tang D., Noordover B.A.J., Sablong R.J., Koning C.E. Thermoplastic Poly(urethane urea)s From Novel, Bio-based Amorphous Polyester Diols. Macromol. Chem. Phys. 2012;213:2541–2549. doi: 10.1002/macp.201200397. DOI

Mattia J., Painter P. A Comparison of Hydrogen Bonding and Order in a Polyurethane and Poly (urethane−urea) and Their Blends with Poly (ethylene glycol) Macromolecules. 2007;40:1546–1554. doi: 10.1021/ma0626362. DOI

Ban J.-L., Li S.-Q., Yi C.-F., Zhao J.-B., Zhang Z.-Y., Zhang J.-Y. Amorphous and Crystallizable Thermoplastic Polyureas Synthesized through a One-pot Non-isocyanate Route. Chin. J. Polym. Sci. 2019;37:43–51. doi: 10.1007/s10118-018-2165-0. DOI

Saucedo-Rivalcoba V., Martínez-Hernández A.L., Martínez-Barrera G., Velasco-Santos C., Castaño V.M. (Chicken feathers keratin)/polyurethane membranes. Appl. Phys. A. 2011;104:219–228. doi: 10.1007/s00339-010-6111-4. DOI

Wrześniewska-Tosik K., Zajchowski S., Bryśkiewicz A., Ryszkowska J. Feathers as a flame-retardant in elastic polyurethane foam. Fibres Text. East. Eur. 2014;103:119–128.

Gokce O., Kasap M., Akpinar G., Ozkoc G. Preparation, characterization, and in vitro evaluation of chicken feather fiber-thermoplastic polyurethane composites. J. Appl. Polym. Sci. 2017;134:45338. doi: 10.1002/app.45338. DOI

Pourjavaheri F., Jones O.A.H., Czajka M., Martinez-Pardo I., Blanch E.W., Shanks R.A. Design and characterization of sustainable bio-composites from waste chicken feather keratin and thermoplastic polyurethane. Polym. Compos. 2018;39:E620–E632. doi: 10.1002/pc.24794. DOI

Wang Y., Li P., Xiang P., Lu J., Yuan J., Shen J. Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings. J. Mater. Chem. B. 2016;4:635–648. doi: 10.1039/C5TB02358K. PubMed DOI

Li H., Oh J.S., Sinha T.K., Kim J.K. Synergistic influence of keratin and TPU: An approach towards bioinspired artificial skin. Mater. Chem. Phys. 2019;223:196–201. doi: 10.1016/j.matchemphys.2018.10.050. DOI

Aranberri I., Montes S., Azcune I., Rekondo A., Grande H.-J. Flexible Biocomposites with Enhanced Interfacial Compatibility Based on Keratin Fibers and Sulfur-Containing Poly (urea-urethane) s. Polymers. 2018;10:1056. doi: 10.3390/polym10101056. PubMed DOI PMC

Adeniyi A., Agboola O., Sadiku E.R., Durowoju M.O., Olubambi P.A., Babul Reddy A., Ibrahim I.D., Kupolati W.K. Thermoplastic-Thermoset Nanostructured Polymer Blends. In: Thomas S., Shanks R., Chandrasekharakurup S., editors. Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems. Elsevier; Boston, MA, USA: 2016. pp. 15–38. Micro and Nano Technologies.

Guo Q., Zheng H. Miscibility and crystallization of thermosetting polymer blends of unsaturated polyester resin and poly(ϵ-caprolactone) Polymer. 1999;40:637–646. doi: 10.1016/S0032-3861(98)00326-7. DOI

Brandt H.-D., Nentwig W., Rooney N., LaFlair R.T., Wolf U.U., Duffy J., Puskas J.E., Kaszas G., Drewitt M., Glander S. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2011. Rubber, 5. Solution Rubbers.

Kim J., Oh T., Lee D. Morphology and rheological properties of nanocomposites based on nitrile rubber and organophilic layered silicates. Polym. Int. 2003;52:1203–1208. doi: 10.1002/pi.1249. DOI

Tadiello L., D’Arienzo M., Di Credico B., Hanel T., Matejka L., Mauri M., Morazzoni F., Simonutti R., Spirkova M., Scotti R. The filler–rubber interface in styrene butadiene nanocomposites with anisotropic silica particles: Morphology and dynamic properties. Soft Matter. 2015;11:4022–4033. doi: 10.1039/C5SM00536A. PubMed DOI

Han D.-H., Choi M.-C., Jeong J.-H., Choi K.-M., Kim H.-S. Properties of acrylonitrile butadiene rubber (NBR)/poly (lactic acid) (PLA) blends and their foams. Compos. Interfaces. 2016;23:771–780. doi: 10.1080/09276440.2016.1170518. DOI

Prochoń M., Przepiórkowska A., Zaborski M. Keratin as a filler for carboxylated acrylonitrile-butadiene rubber XNBR. J. Appl. Polym. Sci. 2007;106:3674–3687. doi: 10.1002/app.26324. DOI

Prochon M., Janowska G., Przepiorkowska A., Kucharska-Jastrzabek A. Thermal properties and combustibility of elastomer–protein composites. Part I. Composites SBR–keratin. J. Therm. Anal. Calorim. 2012;109:1563–1570. doi: 10.1007/s10973-011-2028-1. DOI

Janowska G., Kucharska-Jastrzabek A., Prochon M., Przepiorkowska A. Thermal properties and combustibility of elastomer–protein composites. Part II. Composites NBR–keratin. J. Therm. Anal. Calorim. 2013;113:933–938. doi: 10.1007/s10973-012-2796-2. DOI

Tshela Ntumba Y.-H., Prochoń M. The effect of modified keratin on the thermal properties of a cellulosic–elastomeric material. J. Therm. Anal. Calorim. 2016;125:1151–1160. doi: 10.1007/s10973-016-5590-8. DOI

Castillo-Castillo C., Salazar-Cruz B.A., Rivera-Armenta J.L., Chávez-Cinco M.Y., Méndez-Hernández M.L., Estrada-Moreno I.A., Lara Ceniceros T.E. Evaluation of Elastomeric Composites Reinforced with Chicken Feathers. In: Sidhu S.S., Bains P.S., Zitoune R., Yazdani M., editors. Futuristic Composites: Behavior, Characterization, and Manufacturing. Springer; Singapore: 2018. pp. 297–318.

Méndez-Hernández M.L., Rivera-Armenta J.L., Sandoval-Arellano Z., Salazar-Cruz B.A., Chavez-Cinco M.Y. Evaluation of Styrene Content over Physical and Chemical Properties of Elastomer/TPS-EVOH/Chicken Feather Composites. In: Huicochea E.F., Villalobos R.R., editors. Applications of Modified Starches. InTech; Rijeka, Croatia: 2018.

Matějka L., Lövy J., Pokorný S., Bouchal K., Dušek K. Curing epoxy resins with anhydrides. Model reactions and reaction mechanism. J. Polym. Sci. Polym. Chem. Ed. 1983;21:2873–2885. doi: 10.1002/pol.1983.170211003. DOI

Matějka L., Dušek K., Dobáš I. Curing of epoxy resins with amines - Gelation of polyepoxides derived from diglycidylaniline. Polym. Bull. 1985;14:309–315.

Matějka L., Pokorný S., Dušek K. Acid curing of epoxy resins. A comparison between the polymerization of diepoxide-diacid and monoepoxide-cyclic anhydride systems. Makromol. Chem. 1985;186:2025–2036. doi: 10.1002/macp.1985.021861006. DOI

May C.A. In: Epoxy Resins. Chemistry and Technology. 2nd ed. Dekker M., editor. CRC Press; New York, NY, USA: 1988.

Jin F.-L., Li X., Park S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015;29:1–11. doi: 10.1016/j.jiec.2015.03.026. DOI

Kumar S., Samal S.K., Mohanty S., Nayak S.K. Recent Development of Biobased Epoxy Resins: A Review. Polym. Plast. Technol. Eng. 2018;57:133–155. doi: 10.1080/03602559.2016.1253742. DOI

Baroncini E.A., Kumar Yadav S., Palmese G.R., Stanzione J.F. Recent advances in bio-based epoxy resins and bio-based epoxy curing agents. J. Appl. Polym. Sci. 2016;133:44103. doi: 10.1002/app.44103. DOI

Zhan M., Wool R.P., Xiao J.Q. Electrical properties of chicken feather fiber reinforced epoxy composites. Compos. Part A Appl. Sci. Manuf. 2011;42:229–233. doi: 10.1016/j.compositesa.2010.11.007. DOI

Zhan M., Wool R.P. Thermal expansivity of chicken feather fiber reinforced epoxy composites. J. Appl. Polym. Sci. 2013;128:997–1003. doi: 10.1002/app.38142. DOI

Zhan M., Wool R.P. Mechanical properties of composites with chicken feather and glass fibers. J. Appl. Polym. Sci. 2016;133:44013. doi: 10.1002/app.44013. DOI

Bessa J., Souza J., Lopes J.B., Sampaio J., Mota C., Cunha F., Fangueiro R. Characterization of thermal and acoustic insulation of chicken feather reinforced composites. Procedia Eng. 2017;200:472–479. doi: 10.1016/j.proeng.2017.07.066. DOI

Verma A., Negi P., Singh V.K. Experimental Analysis on Carbon Residuum Transformed Epoxy Resin: Chicken Feather Fiber Hybrid Composite. Polym. Compos. 2019;40:2690–2699. doi: 10.1002/pc.25067. DOI

Hong C.K., Wool R.P. Development of a bio-based composite material from soybean oil and keratin fibers. J. Appl. Polym. Sci. 2005;95:1524–1538. doi: 10.1002/app.21044. DOI

Zhan M., Wool R.P. Design and evaluation of bio-based composites for printed circuit board application. Compos. Part A Appl. Sci. Manuf. 2013;47:22–30. doi: 10.1016/j.compositesa.2012.11.014. DOI

Senoz E., Wool R.P. Microporous carbon-nitrogen fibers from keratin fibers by pyrolysis. J. Appl. Polym. Sci. 2010;118:1752–1765. doi: 10.1002/app.32397. DOI

Senoz E., Wool R.P., McChalicher C.W.J., Hong C.K. Physical and chemical changes in feather keratin during pyrolysis. Polym. Degrad. Stab. 2012;97:297–307. doi: 10.1016/j.polymdegradstab.2011.12.018. DOI

Senoz E., Wool R.P. Hydrogen storage on pyrolyzed chicken feather fibers. Int. J. Hydrogen Energy. 2011;36:7122–7127. doi: 10.1016/j.ijhydene.2011.03.061. DOI

Senoz E., Stanzione J.F., Reno K.H., Wool R.P., Miller M.E.N. Pyrolyzed chicken feather fibers for biobased composite reinforcement. J. Appl. Polym. Sci. 2013;128:983–989. doi: 10.1002/app.38163. DOI

Tollens B.I. Ueber einige Derivate des Formaldehyds. Berichte der Deutschen Chemischen Gesellschaft. 1884;17:653–659. doi: 10.1002/cber.188401701174. DOI

Diem H., Matthias G., Wagner R.A. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2010. Amino Resins.

Dunky M., Pizzl A. Wood adhesives. In: Dillard D.A., Pocius A.V., Chaudhury M., editors. Adhesion Science and Engineering. Elsevier; Amsterdam, The Netherlands: 2002. pp. 1039–1103.

Nuryawan A., Risnasari I., Sucipto T., Heri Iswanto A., Rosmala Dewi R. Urea-formaldehyde resins: Production, application, and testing. IOP Conf. Ser. Mater. Sci. Eng. 2017;223:012053. doi: 10.1088/1757-899X/223/1/012053. DOI

Pang J.Y., Sun C., Zhang S.C., Cui H.X. Study on Modification of Urea Formaldehyde Resin with Keratin. Adv. Mater. Res. 2010;113:1787–1791. doi: 10.4028/www.scientific.net/AMR.113-116.1787. DOI

Dim P.E. Application of Keratin-Modified Urea-Formaldehyde Resin for Bonding Particleboard. Aust. J. Basic Appl. Sci. 2011;5:196–200.

Imperial Chemical Industries, ltd. Plastics Division. Landmarks of the Plastics Industry. 1st ed. Imperial Chemical Industries (Plastics Division); Welwyn Garden City, UK: 1962.

Brydson J.A. Phenolic Resins. In: Brydson J.A., editor. Plastics Materials. Elsevier; Oxford, UK: 1999. pp. 635–667.

Cygan M., Szemień M., Krompiec S. Statistical screening analysis of the chemical composition and kinetic study of phenol-formaldehyde resins synthesized in the presence of polyamines as co-catalysts. PLoS ONE. 2018;13:e0195069. doi: 10.1371/journal.pone.0195069. PubMed DOI PMC

Gusse A.C., Miller P.D., Volk T.J. White-Rot Fungi Demonstrate First Biodegradation of Phenolic Resin. Environ. Sci. Technol. 2006;40:4196–4199. doi: 10.1021/es060408h. PubMed DOI

El Mansouri N.E., Yuan Q., Huang F. Preparation and Characterization of Phenol-Formaldehyde Resins Modified with Alkaline Rice Straw Lignin. BioResources. 2018;13:8061–8075. doi: 10.15376/biores.13.4.8061-8075. DOI

Siddiqui H., Mahmood N., Yuan Z., Crapulli F., Dessbesell L., Rizkalla A., Ray A., Xu C. (Charles) Sustainable Bio-Based Phenol-Formaldehyde Resoles Using Hydrolytically Depolymerized Kraft Lignin. Molecules. 2017;22:1850. doi: 10.3390/molecules22111850. PubMed DOI PMC

Winandy J.E., Muehl J.H., Glaeser J.A., Schmidt W. Chicken Feather Fiber as an Additive in MDF Composites. J. Nat. Fibers. 2007;4:35–48. doi: 10.1300/J395v04n01_04. DOI

Jiang Z., Qin D., Hse C.-Y., Kuo M., Luo Z., Wang G., Yu Y. Preliminary Study on Chicken Feather Protein–Based Wood Adhesives. J. Wood Chem. Technol. 2008;28:240–246. doi: 10.1080/02773810802347073. DOI

Kawahara Y., Ishibashi N., Yamamoto K., Wakizaka H., Iwashita N., Kenjo S., Nishikawa G. Activated carbon production by co-carbonization of feathers using water-soluble phenolic resin under controlled graphitization. Sustain. Mater. Technol. 2015;4:18–23. doi: 10.1016/j.susmat.2015.06.001. DOI

Kawahara Y. Electrospinning of Direct Carbonizable Phenolic Resin-based Nanofibers. J. Text. Sci. Eng. 2016;6:257. doi: 10.4172/2165-8064.1000257. DOI

Ramesh H.P., Tharanathan R.N. Carbohydrates—The Renewable Raw Materials of High Biotechnological Value. Crit. Rev. Biotechnol. 2003;23:149–173. doi: 10.1080/713609312. PubMed DOI

Thomas B., Raj M.C., Joy J., Moores A., Drisko G.L., Sanchez C. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem. Rev. 2018;118:11575–11625. doi: 10.1021/acs.chemrev.7b00627. PubMed DOI

Moon R.J., Martini A., Nairn J., Simonsen J., Youngblood J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011;40:3941–3994. doi: 10.1039/c0cs00108b. PubMed DOI

Barone J.R. Lignocellulosic Fiber-Reinforced Keratin Polymer Composites. J. Polym. Environ. 2009;17:143–151. doi: 10.1007/s10924-009-0131-1. DOI

Song K., Xu H., Xie K., Yang Y. Keratin-Based Biocomposites Reinforced and Cross-Linked with Dual-Functional Cellulose Nanocrystals. ACS Sustain. Chem. Eng. 2017;5:5669–5678. doi: 10.1021/acssuschemeng.7b00085. DOI

Kaur M., Arshad M., Ullah A. In-Situ Nanoreinforced Green Bionanomaterials from Natural Keratin and Montmorillonite (MMT)/Cellulose Nanocrystals (CNC) ACS Sustain. Chem. Eng. 2018;6:1977–1987. doi: 10.1021/acssuschemeng.7b03380. DOI

Liebeck B., Hidalgo N., Roth G., Popescu C., Böker A. Synthesis and Characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes. Polymers. 2017;9:91. doi: 10.3390/polym9030091. PubMed DOI PMC

Lin G., Chen X., Zhou H., Zhou X., Xu H., Chen H. Elaboration of a feather keratin/carboxymethyl cellulose complex exhibiting pH sensitivity for sustained pesticide release. J. Appl. Polym. Sci. 2019;136:47160. doi: 10.1002/app.47160. DOI

Wang X., Lu C., Chen C. Effect of chicken-feather protein-based flame retardant on flame retarding performance of cotton fabric. J. Appl. Polym. Sci. 2014;131:40584. doi: 10.1002/app.40584. DOI

De Silva R., Wang X., Byrne N. Tri-component bio-composite materials prepared using an eco-friendly processing route. Cellulose. 2013;20:2461–2468. doi: 10.1007/s10570-013-0014-4. DOI

De Silva R., Vongsanga K., Wang X., Byrne N. Development of a novel regenerated cellulose composite material. Carbohydr. Polym. 2015;121:382–387. doi: 10.1016/j.carbpol.2014.12.018. PubMed DOI

De Silva R., Wang X., Byrne N. Development of a novel cellulose/duck feather composite fibre regenerated in ionic liquid. Carbohydr. Polym. 2016;153:115–123. doi: 10.1016/j.carbpol.2016.07.090. PubMed DOI

Kammiovirta K., Jääskeläinen A.-S., Kuutti L., Holopainen-Mantila U., Paananen A., Suurnäkki A., Orelma H. Keratin-reinforced cellulose filaments from ionic liquid solutions. RSC Adv. 2016;6:88797–88806. doi: 10.1039/C6RA20204G. DOI

Tran C.D., Mututuvari T.M. Cellulose, Chitosan and Keratin Composite Materials: Facile and Recyclable Synthesis, Conformation and Properties. ACS Sustain. Chem. Eng. 2016;4:1850–1861. doi: 10.1021/acssuschemeng.6b00084. PubMed DOI PMC

Tran C.D., Mututuvari T.M. Cellulose, Chitosan, and Keratin Composite Materials. Controlled Drug Release. Langmuir. 2015;31:1516–1526. doi: 10.1021/la5034367. PubMed DOI PMC

Sahariah P., Másson M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules. 2017;18:3846–3868. doi: 10.1021/acs.biomac.7b01058. PubMed DOI

Zargar V., Asghari M., Dashti A. A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. ChemBioEng Rev. 2015;2:204–226. doi: 10.1002/cben.201400025. DOI

Gassner G., Schmidt W., Line M.J., Thomas C., Waters R. Fiber and Fiber Products Produced From Feathers. No. 5,705,030. U.S. Patent. 1998 Jan 6;

Flores-Hernández C., Colín-Cruz A., Velasco-Santos C., Castaño V., Rivera-Armenta J., Almendarez-Camarillo A., García-Casillas P., Martínez-Hernández A. All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers. Polymers. 2014;6:686–705. doi: 10.3390/polym6030686. DOI

Flores-Hernandez C.G., Martinez-Hernandez A.L., Colin-Cruz A., Martinez-Bustos F., Castaño V.M., Olivas-Armendariz I., Almendarez-Camarillo A., Velasco-Santos C. Starch Modified With Chitosan and Reinforced With Feather Keratin Materials Produced by Extrusion Process: An Alternative to Starch Polymers. Starch Stärke. 2018;70:1700295. doi: 10.1002/star.201700295. DOI

Hsieh S.-H., Huang Z.K., Huang Z.Z., Tseng Z.S. Antimicrobial and physical properties of woolen fabrics cured with citric acid and chitosan. J. Appl. Polym. Sci. 2004;94:1999–2007. doi: 10.1002/app.21104. DOI

Ghosh A., Grosvenor A.J., Dyer J.M. Improving the properties of chemically damaged wool fabrics with carbohydrate polymers. J. Appl. Polym. Sci. 2013;130:3105–3111. doi: 10.1002/app.39554. DOI

Ranjbar-Mohammadi M., Hajir Bahrami S., Arami M. Eco-friendly grafting of natural biopolymer chitosan onto acylated wool fabrics using ultrasonic and study its properties. J. Appl. Polym. Sci. 2013;129:707–713. doi: 10.1002/app.38796. DOI

Shanmugasundaram O.L., Ahmed K.S.Z., Sujatha K., Ponnmurugan P., Srivastava A., Ramesh R., Sukumar R., Elanithi K. Fabrication and characterization of chicken feather keratin/polysaccharides blended polymer coated nonwoven dressing materials for wound healing applications. Mater. Sci. Eng. C. 2018;92:26–33. doi: 10.1016/j.msec.2018.06.020. PubMed DOI

Saravanan S., Sameera D.K., Moorthi A., Selvamurugan N. Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int. J. Biol. Macromol. 2013;62:481–486. doi: 10.1016/j.ijbiomac.2013.09.034. PubMed DOI

Ma B., Chen W., Qiao X., Pan G., Jakpa W., Hou X., Yang Y. Tunable wettability and tensile strength of chitosan membranes using keratin microparticles as reinforcement. J. Appl. Polym. Sci. 2017;134:44667. doi: 10.1002/app.44667. DOI

Eslahi N., Simchi A., Mehrjoo M., Shokrgozar M.A., Bonakdar S. Hybrid cross-linked hydrogels based on fibrous protein/block copolymers and layered silicate nanoparticles: Tunable thermosensitivity, biodegradability and mechanical durability. RSC Adv. 2016;6:62944–62957. doi: 10.1039/C6RA08563F. DOI

Zahedi E., Esmaeili A., Eslahi N., Shokrgozar M.A., Simchi A. Fabrication and Characterization of Core-Shell Electrospun Fibrous Mats Containing Medicinal Herbs for Wound Healing and Skin Tissue Engineering. Mar. Drugs. 2019;17:27. doi: 10.3390/md17010027. PubMed DOI PMC

Lin C.-W., Chen Y.-K., Lu M., Lou K.-L., Yu J. Photo-Crosslinked Keratin/Chitosan Membranes as Potential Wound Dressing Materials. Polymers. 2018;10:987. doi: 10.3390/polym10090987. PubMed DOI PMC

Kakkar P., Verma S., Manjubala I., Madhan B. Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering. Mater. Sci. Eng. C. 2014;45:343–347. doi: 10.1016/j.msec.2014.09.021. PubMed DOI

Balaji S., Kumar R., Sripriya R., Kakkar P., Ramesh D.V., Reddy P.N.K., Sehgal P.K. Preparation and comparative characterization of keratin–chitosan and keratin–gelatin composite scaffolds for tissue engineering applications. Mater. Sci. Eng. C. 2012;32:975–982. doi: 10.1016/j.msec.2012.02.023. DOI

Singaravelu S., Ramanathan G., Raja M.D., Barge S., Sivagnanam U.T. Preparation and characterization of keratin-based biosheet from bovine horn waste as wound dressing material. Mater. Lett. 2015;152:90–93. doi: 10.1016/j.matlet.2015.03.088. DOI

Lee K.Y., Mooney D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012;37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003. PubMed DOI PMC

Wrześniewska-Tosik K., Adamiec J. Biocomposites with a content of keratin from chicken feathers. Fibres Text. East. Eur. 2007;15:106–112.

Hamasaki S., Tachibana A., Tada D., Yamauchi K., Tanabe T. Fabrication of highly porous keratin sponges by freeze-drying in the presence of calcium alginate beads. Mater. Sci. Eng. C. 2008;28:1250–1254. doi: 10.1016/j.msec.2007.11.008. DOI

Gupta P., Nayak K.K. Compatibility study of alginate/keratin blend for biopolymer development. J. Appl. Biomater. Funct. Mater. 2015;13:332–339. doi: 10.5301/jabfm.5000242. PubMed DOI

He M., Zhang B., Dou Y., Yin G., Cui Y. Blend modification of feather keratin-based films using sodium alginate. J. Appl. Polym. Sci. 2017;134:44680. doi: 10.1002/app.44680. DOI

Srisuwan Y., Srihanam P. Preparation and Characterization of Keratin/Alginate Blend Microparticles. Adv. Mater. Sci. Eng. 2018;2018:8129218. doi: 10.1155/2018/8129218. DOI

Bertoft E. Understanding Starch Structure: Recent Progress. Agronomy. 2017;7:56. doi: 10.3390/agronomy7030056. DOI

Wojtowicz A., Janssen L.P.B.M., Moscicki L. Thermoplastic Starch. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2010. Blends of Natural and Synthetic Polymers; pp. 35–53.

Rabe S., Sanchez-Olivares G., Pérez-Chávez R., Schartel B. Natural Keratin and Coconut Fibres from Industrial Wastes in Flame Retarded Thermoplastic Starch Biocomposites. Materials. 2019;12:344. doi: 10.3390/ma12030344. PubMed DOI PMC

Hertweck C. Biosynthesis and Charging of Pyrrolysine, the 22nd Genetically Encoded Amino Acid. Angew. Chemie Int. Ed. 2011;50:9540–9541. doi: 10.1002/anie.201103769. PubMed DOI

Hu X., Cebe P., Weiss A.S., Omenetto F., Kaplan D.L. Protein-based composite materials. Mater. Today. 2012;15:208–215. doi: 10.1016/S1369-7021(12)70091-3. DOI

Cui L., Wang Q., Wang P., Huan Q., Fan X. Transglutaminase-mediated crosslinking of gelatin onto wool surfaces to improve the fabric properties. J. Appl. Polym. Sci. 2009;113:2598–2604. doi: 10.1002/app.30300. DOI

Prasong S., Wasan T. Preparation and Characterization of Hair Keratin/Gelatin Blend Films. Pakistan J. Biol. Sci. 2011;14:351–356. doi: 10.3923/pjbs.2011.351.356. PubMed DOI

Thonpho A., Srihanam P. Preparation and Characterization of Keratin Blended Films using Biopolymers for Drug Controlled Release Application. Orient. J. Chem. 2016;32:1739–1748. doi: 10.13005/ojc/320402. DOI

Ramadoss P., Thanigai Arul K., Ramana Ramya J., Rigana Begam M., Sarath Chandra V., Manikandan E. Enhanced mechanical strength and sustained drug release of gelatin/keratin scaffolds. Mater. Lett. 2017;186:109–112. doi: 10.1016/j.matlet.2016.09.095. DOI

Maruthi Y., Sudhakar H., Rao U.S., Babu P.K., Rao K.C., Subha M.C.S. Blend Membranes of Sodium alginate and Soya protein for Pervaporation Dehydration of Isopropanol. Adv. Polym. Sci. Technol. 2014;4:12–21.

Li S., Donner E., Xiao H., Thompson M., Zhang Y., Rempel C., Liu Q. Preparation and characterization of soy protein films with a durable water resistance-adjustable and antimicrobial surface. Mater. Sci. Eng. C. 2016;69:947–955. doi: 10.1016/j.msec.2016.07.079. PubMed DOI

Tansaz S., Liverani L., Vester L., Boccaccini A.R. Soy protein meets bioactive glass: Electrospun composite fibers for tissue engineering applications. Mater. Lett. 2017;199:143–146. doi: 10.1016/j.matlet.2017.04.042. DOI

Hammann F., Schmid M. Determination and Quantification of Molecular Interactions in Protein Films: A Review. Materials. 2014;7:7975–7996. doi: 10.3390/ma7127975. PubMed DOI PMC

De Santis M.A., Giuliani M.M., Giuzio L., De Vita P., Lovegrove A., Shewry P.R., Flagella Z. Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Eur. J. Agron. 2017;87:19–29. doi: 10.1016/j.eja.2017.04.003. PubMed DOI PMC

Lucas I., Becker T., Jekle M. Gluten Polymer Networks—A Microstructural Classification in Complex Systems. Polymers. 2018;10:617. doi: 10.3390/polym10060617. PubMed DOI PMC

Wang S., Meng D., Wang S., Zhang Z., Yang R., Zhao W. Modification of wheat gluten for improvement of binding capacity with keratin in hair. R. Soc. Open Sci. 2018;5:171216. doi: 10.1098/rsos.171216. PubMed DOI PMC

Garrido T., Leceta I., de la Caba K., Guerrero P. Chicken feathers as a natural source of sulphur to develop sustainable protein films with enhanced properties. Int. J. Biol. Macromol. 2018;106:523–531. doi: 10.1016/j.ijbiomac.2017.08.043. PubMed DOI

Lefèvre T., Rousseau M.-E., Pézolet M. Protein Secondary Structure and Orientation in Silk as Revealed by Raman Spectromicroscopy. Biophys. J. 2007;92:2885–2895. doi: 10.1529/biophysj.106.100339. PubMed DOI PMC

Jao D., Mou X., Hu X. Tissue Regeneration: A Silk Road. J. Funct. Biomater. 2016;7:22. doi: 10.3390/jfb7030022. PubMed DOI PMC

Vu T., Xue Y., Vuong T., Erbe M., Bennet C., Palazzo B., Popielski L., Rodriguez N., Hu X. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials. Int. J. Mol. Sci. 2016;17:1497. doi: 10.3390/ijms17091497. PubMed DOI PMC

Wei W., Youbo D., Zhou Z., Xing W., Chunli Q., Libin G. Preparation and characterization of protein/viscose fiber and its action in self-heating. J. Appl. Polym. Sci. 2019;136:47146. doi: 10.1002/app.47146. DOI

Baden H.P. Structure of epidermal keratin and variations in its polypeptide composition. Curr. Probl. Dermatol. 1980;10:345–363. PubMed

IUPAC . In: Compendium of Chemical Terminology. 2nd ed. Nič M., Jirát J., Košata B., Jenkins A., McNaught A., editors. IUPAC; Carolina Research Triagle Park, NC, USA: 2006.

Wang X., Peng Y. Comparative study of the structure and properties of wool treated by a chicken-feather keratin agent, plasma, and their combination. J. Appl. Polym. Sci. 2011;119:1627–1634. doi: 10.1002/app.32853. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...