Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- antifungální látky metabolismus toxicita MeSH
- buněčná stěna chemie MeSH
- Cryptococcus účinky léků růst a vývoj metabolismus MeSH
- cytoplazma chemie MeSH
- organely chemie MeSH
- polyfosfáty metabolismus MeSH
- těžké kovy metabolismus toxicita MeSH
- tolerance léku * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antifungální látky MeSH
- polyfosfáty MeSH
- těžké kovy MeSH
The basidiomycetous yeast Cryptococcus humicola was shown to be tolerant to manganese, cobalt, nickel, zinc, lanthanum, and cadmium cations at a concentration of 2.5 mmol/L, which is toxic for many yeasts. The basidiomycetous yeast Cryptococcus terreus was sensitive to all these ions and did not grow at the above concentration. In the presence of heavy metal cations, С. humicola, as opposed to C. terreus, was characterized by the higher content of acid-soluble inorganic polyphosphates. In vivo 4',6'-diamino-2-phenylindole dihydrochloride staining revealed polyphosphate accumulation in the cell wall and cytoplasmic inclusions of С. humicola in the presence of heavy metals. In C. terreus, polyphosphates in the presence of heavy metals accumulate mainly in vacuoles, which results in morphological changes in these organelles and, probably, disturbance of their function. The role of polyphosphate accumulation and cellular localization as factors of heavy metal tolerance of Cryptococcus humicola is discussed.
Zobrazit více v PubMed
Biochemistry (Mosc). 2000 Mar;65(3):349-54 PubMed
J Insect Physiol. 2012 Feb;58(2):211-9 PubMed
Microb Cell Fact. 2011 Aug 04;10:63 PubMed
Eukaryot Cell. 2005 Jul;4(7):1159-65 PubMed
Annu Rev Biochem. 2009;78:605-47 PubMed
J Exp Bot. 2002 May;53(372):1351-65 PubMed
J Biol Inorg Chem. 2010 Sep;15(7):1051-62 PubMed
Fungal Biol. 2011 Oct;115(10):950-8 PubMed
Biochim Biophys Acta. 2002 Feb 1;1558(2):161-70 PubMed
Toxicol Sci. 2008 Nov;106(1):124-39 PubMed
J Appl Microbiol. 2010 Oct;109(4):1411-21 PubMed
Yeast. 2013 Mar;30(3):93-101 PubMed
J Biol Chem. 2010 Mar 26;285(13):9420-9428 PubMed
Environ Microbiol. 2013 Jan;15(1):287-96 PubMed
Microb Biotechnol. 2013 Sep;6(5):453-92 PubMed
J Microbiol Methods. 2002 Sep;51(1):1-18 PubMed
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7835-40 PubMed
Molecules. 2011 Mar 15;16(3):2486-500 PubMed
Yeast. 2010 Jun;27(6):309-15 PubMed
PLoS One. 2012;7(6):e38858 PubMed
J Biol Chem. 2003 Oct 24;278(43):42036-40 PubMed
PLoS Genet. 2008 Apr 25;4(4):e1000053 PubMed
BMC Genomics. 2009 Mar 12;10:105 PubMed
FEMS Microbiol Rev. 2010 Nov;34(6):925-51 PubMed
PLoS One. 2012;7(2):e30966 PubMed
FEMS Yeast Res. 2012 Sep;12(6):617-24 PubMed
Biotechnol Prog. 1999 Jan-Feb;15(1):65-73 PubMed
Mol Microbiol. 2010 May;76(4):1034-48 PubMed
Appl Environ Microbiol. 2013 Jan;79(1):273-81 PubMed
Biochemistry (Mosc). 2000 Mar;65(3):324-31 PubMed
Environ Monit Assess. 2011 Mar;174(1-4):585-95 PubMed
Antonie Van Leeuwenhoek. 2012 Jun;102(1):29-43 PubMed
Metallomics. 2011 Nov;3(11):1153-62 PubMed
Appl Environ Microbiol. 2006 Nov;72(11):7043-9 PubMed
J Biosci Bioeng. 2010 May;109(5):423-32 PubMed
FEMS Yeast Res. 2013 Aug;13(5):463-70 PubMed
Microbiology (Reading). 2006 Jan;152(Pt 1):59-66 PubMed
FEMS Microbiol Lett. 1994 Jun 1;119(1-2):105-10 PubMed
J Basic Microbiol. 2006;46(2):145-52 PubMed
Science. 2009 Apr 24;324(5926):513-6 PubMed
Biochemistry (Mosc). 2008 Nov;73(11):1224-7 PubMed
Front Oncol. 2012 Oct 10;2:140 PubMed
Manganese tolerance in yeasts involves polyphosphate, magnesium, and vacuolar alterations