The basidiomycetous yeast Cryptococcus humicola was shown to be tolerant to manganese, cobalt, nickel, zinc, lanthanum, and cadmium cations at a concentration of 2.5 mmol/L, which is toxic for many yeasts. The basidiomycetous yeast Cryptococcus terreus was sensitive to all these ions and did not grow at the above concentration. In the presence of heavy metal cations, С. humicola, as opposed to C. terreus, was characterized by the higher content of acid-soluble inorganic polyphosphates. In vivo 4',6'-diamino-2-phenylindole dihydrochloride staining revealed polyphosphate accumulation in the cell wall and cytoplasmic inclusions of С. humicola in the presence of heavy metals. In C. terreus, polyphosphates in the presence of heavy metals accumulate mainly in vacuoles, which results in morphological changes in these organelles and, probably, disturbance of their function. The role of polyphosphate accumulation and cellular localization as factors of heavy metal tolerance of Cryptococcus humicola is discussed.
- MeSH
- Antifungal Agents metabolism toxicity MeSH
- Cell Wall chemistry MeSH
- Cryptococcus drug effects growth & development metabolism MeSH
- Cytoplasm chemistry MeSH
- Organelles chemistry MeSH
- Polyphosphates metabolism MeSH
- Metals, Heavy metabolism toxicity MeSH
- Drug Tolerance * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The composition, main structural features and molecular properties of exopolysaccharides (EP) produced by Cryptococcus laurentii var. laurentii CCY 17-3-16 under optimal (EPo) and NaCI-stress conditions (EPs) as well as their subfractions isolated by gel chromatography were studied using chemical, FT-IR and NMR spectroscopy methods. The results showed that under stress conditions the yeast produced EP with a lower content of protein and phosphorus. In comparison to EPo, the EPs exhibited a substantially larger proportion of high molecular mass populations. NMR analysis of EPs revealed a higher degree of branching with single xylose side chains of the heteromannan components. The increase of the molecular mass and degree of branching of the macromolecular chains of the heteromannan components might in part be related to the function of EPs to protect the yeast cells from water loss and maintain growth conditions under the salt stress.