Manganese tolerance in yeasts involves polyphosphate, magnesium, and vacuolar alterations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26646947
DOI
10.1007/s12223-015-0440-9
PII: 10.1007/s12223-015-0440-9
Knihovny.cz E-zdroje
- MeSH
- buněčná stěna chemie MeSH
- hořčík metabolismus MeSH
- kvasinky cytologie účinky léků růst a vývoj metabolismus MeSH
- mangan metabolismus MeSH
- polyfosfáty metabolismus MeSH
- tolerance léku * MeSH
- vakuoly metabolismus ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hořčík MeSH
- mangan MeSH
- polyfosfáty MeSH
Basidiomycetous and ascomycetous yeast species were tested for manganese tolerance. Basidiomycetous Cryptococcus humicola, Cryptococcus terricola, Cryptococcus curvatus and ascomycetous Candida maltosa, Kluyveromyces marxianus, Kuraishia capsulata, Lindnera fabianii and Sacharomyces cerevisiae were able to grow at manganese excess (2.5 mmol/L), while the growth of basidiomycetous Rhodotorula bogoriensis was completely suppressed. The lag phase duration increased and the exponential growth rate decreased at manganese excess. The increase of cell size and enlargement of vacuoles were characteristics for the cells grown at manganese excess. The alterations in inorganic polyphosphate content and cellular localization were studied. L. fabianii, K. capsulata, C. maltosa, and Cr. humicola accumulated the higher amounts of inorganic polyphosphates, while Cr. terricola and Cr. curvatus demonstrated no such accumulation. The polyphosphate content in the cell wall tested by DAPI staining increased in all species under the study; however, this effect was more pronounced in Cr. terricola and Cr. curvatus. The accumulation of Mg(2+) in the cell wall under Mn(2+) excess was observed in Cr. humicola, Cr. curvatus and Cr. terricola. The accumulation of polyphosphate and magnesium in the cell wall was supposed to be a factor of manganese tolerance in yeasts.
Zobrazit více v PubMed
PLoS Genet. 2008 Apr 25;4(4):e1000053 PubMed
J Appl Microbiol. 2010 Oct;109(4):1411-21 PubMed
Biochemistry (Mosc). 1999 Sep;64(9):990-3 PubMed
FEMS Microbiol Rev. 2010 Nov;34(6):925-51 PubMed
Biochemistry (Mosc). 2000 Mar;65(3):349-54 PubMed
BMC Genomics. 2009 Mar 12;10:105 PubMed
Folia Microbiol (Praha). 1979;24(3):240-6 PubMed
Chem Rev. 2009 Oct;109(10):4722-32 PubMed
Acta Biochim Pol. 2013;60(4):695-700 PubMed
J Biol Chem. 2010 Mar 26;285(13):9420-8 PubMed
J Bacteriol. 1980 Nov;144(2):661-5 PubMed
Mikrobiologiia. 2002 Jul-Aug;71(4):455-9 PubMed
FEMS Yeast Res. 2012 Sep;12(6):617-24 PubMed
J Basic Microbiol. 2006;46(2):145-52 PubMed
Appl Microbiol Biotechnol. 1998 Jun;49(6):751-7 PubMed
Environ Monit Assess. 2011 Mar;174(1-4):585-95 PubMed
Microb Cell Fact. 2011 Aug 04;10:63 PubMed
Annu Rev Biochem. 2009;78:605-47 PubMed
Yeast. 2013 Mar;30(3):93-101 PubMed
Biol Bull Acad Sci USSR. 1978 Sep-Oct;5(5):638-40 PubMed
FEMS Yeast Res. 2013 Aug;13(5):463-70 PubMed
Eukaryot Cell. 2005 Jul;4(7):1159-65 PubMed
Yeast. 2010 Jun;27(6):309-15 PubMed
J Basic Microbiol. 2003;43(3):185-93 PubMed
J Microbiol Methods. 2002 Sep;51(1):1-18 PubMed
J Biol Chem. 2003 Oct 24;278(43):42036-40 PubMed
Fungal Genet Biol. 2014 Jun;67:3-14 PubMed
Folia Microbiol (Praha). 2014 Sep;59(5):381-9 PubMed
The acid phosphatase Pho5 of Saccharomyces cerevisiae is not involved in polyphosphate breakdown