Manganese tolerance in yeasts involves polyphosphate, magnesium, and vacuolar alterations

. 2016 Jul ; 61 (4) : 311-7. [epub] 20151208

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26646947
Odkazy

PubMed 26646947
DOI 10.1007/s12223-015-0440-9
PII: 10.1007/s12223-015-0440-9
Knihovny.cz E-zdroje

Basidiomycetous and ascomycetous yeast species were tested for manganese tolerance. Basidiomycetous Cryptococcus humicola, Cryptococcus terricola, Cryptococcus curvatus and ascomycetous Candida maltosa, Kluyveromyces marxianus, Kuraishia capsulata, Lindnera fabianii and Sacharomyces cerevisiae were able to grow at manganese excess (2.5 mmol/L), while the growth of basidiomycetous Rhodotorula bogoriensis was completely suppressed. The lag phase duration increased and the exponential growth rate decreased at manganese excess. The increase of cell size and enlargement of vacuoles were characteristics for the cells grown at manganese excess. The alterations in inorganic polyphosphate content and cellular localization were studied. L. fabianii, K. capsulata, C. maltosa, and Cr. humicola accumulated the higher amounts of inorganic polyphosphates, while Cr. terricola and Cr. curvatus demonstrated no such accumulation. The polyphosphate content in the cell wall tested by DAPI staining increased in all species under the study; however, this effect was more pronounced in Cr. terricola and Cr. curvatus. The accumulation of Mg(2+) in the cell wall under Mn(2+) excess was observed in Cr. humicola, Cr. curvatus and Cr. terricola. The accumulation of polyphosphate and magnesium in the cell wall was supposed to be a factor of manganese tolerance in yeasts.

Zobrazit více v PubMed

PLoS Genet. 2008 Apr 25;4(4):e1000053 PubMed

J Appl Microbiol. 2010 Oct;109(4):1411-21 PubMed

Biochemistry (Mosc). 1999 Sep;64(9):990-3 PubMed

FEMS Microbiol Rev. 2010 Nov;34(6):925-51 PubMed

Biochemistry (Mosc). 2000 Mar;65(3):349-54 PubMed

BMC Genomics. 2009 Mar 12;10:105 PubMed

Folia Microbiol (Praha). 1979;24(3):240-6 PubMed

Chem Rev. 2009 Oct;109(10):4722-32 PubMed

Acta Biochim Pol. 2013;60(4):695-700 PubMed

J Biol Chem. 2010 Mar 26;285(13):9420-8 PubMed

J Bacteriol. 1980 Nov;144(2):661-5 PubMed

Mikrobiologiia. 2002 Jul-Aug;71(4):455-9 PubMed

FEMS Yeast Res. 2012 Sep;12(6):617-24 PubMed

J Basic Microbiol. 2006;46(2):145-52 PubMed

Appl Microbiol Biotechnol. 1998 Jun;49(6):751-7 PubMed

Environ Monit Assess. 2011 Mar;174(1-4):585-95 PubMed

Microb Cell Fact. 2011 Aug 04;10:63 PubMed

Annu Rev Biochem. 2009;78:605-47 PubMed

Yeast. 2013 Mar;30(3):93-101 PubMed

Biol Bull Acad Sci USSR. 1978 Sep-Oct;5(5):638-40 PubMed

FEMS Yeast Res. 2013 Aug;13(5):463-70 PubMed

Eukaryot Cell. 2005 Jul;4(7):1159-65 PubMed

Yeast. 2010 Jun;27(6):309-15 PubMed

J Basic Microbiol. 2003;43(3):185-93 PubMed

J Microbiol Methods. 2002 Sep;51(1):1-18 PubMed

J Biol Chem. 2003 Oct 24;278(43):42036-40 PubMed

Fungal Genet Biol. 2014 Jun;67:3-14 PubMed

Folia Microbiol (Praha). 2014 Sep;59(5):381-9 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The acid phosphatase Pho5 of Saccharomyces cerevisiae is not involved in polyphosphate breakdown

. 2019 Nov ; 64 (6) : 867-873. [epub] 20190401

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...