The acid phosphatase Pho5 of Saccharomyces cerevisiae is not involved in polyphosphate breakdown

. 2019 Nov ; 64 (6) : 867-873. [epub] 20190401

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30937822

Grantová podpora
17-04-00822 Russian Foundation of Basic Research

Odkazy

PubMed 30937822
DOI 10.1007/s12223-019-00702-6
PII: 10.1007/s12223-019-00702-6
Knihovny.cz E-zdroje

Inorganic polyphosphate is involved in architecture and functioning of yeast cell wall. The strain of Saccharomyces cerevisiae constitutively overexpressing acid phosphatase Pho5 was constructed for studying the Pho5 properties and its possible participation in polyphosphate metabolism. The parent strain was transformed by the vector carrying the PHO5 gene under a strong constitutive promoter of glyceraldehyde-3-phosphate dehydrogenase of S. cerevisiae. The culture liquid and biomass of transformant strain contained approximately equal total acid phosphatase activity. The levels of acid phosphatase activity associated with the cell wall and culture liquid increased in the transformant strain compared to the parent strain ~ 10- and 20-fold, respectively. The Pho5 preparation (specific activity of 46 U/mg protein and yield of 95 U/L) was obtained from culture liquid of overproducing strain. The overproducing strain had no changes in polyphosphate level. The activity of Pho5 with long-chained polyP was negligible. We concluded that Pho5 is not involved in polyphosphate metabolism. Purified Pho5 showed a similar activity with p-nitrophenylphosphate, ATP, ADP, glycerophosphate, and glucose-6-phosphate. The substrate specificity of Pho5 and its extracellular localization suggest its function: the hydrolysis of organic compounds with phosphoester bonds at phosphate limitation.

Zobrazit více v PubMed

Nat Protoc. 2007;2(1):31-4 PubMed

J Vis Exp. 2011 Dec 26;(58):e3749 PubMed

Biochemistry (Mosc). 2000 Mar;65(3):349-54 PubMed

Genes Genet Syst. 1997 Dec;72(6):323-34 PubMed

J Bacteriol. 1973 Feb;113(2):727-38 PubMed

Biochem Biophys Res Commun. 1984 Aug 16;122(3):1083-90 PubMed

World J Microbiol Biotechnol. 2016 Feb;32(2):27 PubMed

Dokl Biochem Biophys. 2008 May-Jun;420:142-5 PubMed

World J Gastroenterol. 2016 Sep 7;22(33):7402-14 PubMed

Biochim Biophys Acta. 1990 Feb 9;1037(2):147-54 PubMed

BMC Genomics. 2014 Nov 29;15:1040 PubMed

Curr Genet. 2016 May;62(2):301-7 PubMed

Adv Exp Med Biol. 2016;892:33-68 PubMed

Biochemistry (Mosc). 2013 Aug;78(8):946-53 PubMed

Microbiol Res. 1996 Aug;151(3):291-300 PubMed

Folia Microbiol (Praha). 2016 Jul;61(4):311-7 PubMed

Annu Rev Biochem. 2009;78:605-47 PubMed

Mol Cell Biol. 2009 Sep;29(18):4891-905 PubMed

Curr Genet. 2018 Feb;64(1):155-161 PubMed

Biochemistry. 2002 Oct 8;41(40):12025-31 PubMed

Yeast. 1993 Feb;9(2):127-39 PubMed

Curr Genet. 2017 Feb;63(1):15-18 PubMed

J Cell Biol. 1998 Jan 26;140(2):431-46 PubMed

FEMS Yeast Res. 2017 May 1;17(3): PubMed

FEBS Lett. 2012 Feb 17;586(4):289-95 PubMed

Eukaryot Cell. 2005 Nov;4(11):1892-901 PubMed

Genetics. 1989 May;122(1):19-27 PubMed

Trends Biochem Sci. 2005 May;30(5):235-9 PubMed

Future Microbiol. 2017 Mar;12:227-238 PubMed

J Gen Appl Microbiol. 2017 Jan 25;62(6):297-302 PubMed

J Biol Chem. 1973 Jun 10;248(11):3860-75 PubMed

Nucleic Acids Res. 2014;42(17):10888-902 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...