Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Serologic and Mendelian Randomization Analyses
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
HHSN268201100001C
WHI NIH HHS - United States
R01 CA059045
NCI NIH HHS - United States
U01 CA074799
NCI NIH HHS - United States
G1000143
Medical Research Council - United Kingdom
K05 CA154337
NCI NIH HHS - United States
KL2 TR002317
NCATS NIH HHS - United States
KL2 TR000421
NCATS NIH HHS - United States
U24 CA074800
NCI NIH HHS - United States
P30 CA006973
NCI NIH HHS - United States
P30 CA076292
NCI NIH HHS - United States
C8221/A19170
Cancer Research UK - United Kingdom
R01 CA137178
NCI NIH HHS - United States
U24 CA074783
NCI NIH HHS - United States
U24 CA074806
NCI NIH HHS - United States
U10 CA037429
NCI NIH HHS - United States
K07 CA190673
NCI NIH HHS - United States
U24 CA074794
NCI NIH HHS - United States
P30 DK034987
NIDDK NIH HHS - United States
P01 CA087969
NCI NIH HHS - United States
14136
Cancer Research UK - United Kingdom
MR/N003284/1
Medical Research Council - United Kingdom
U01 CA137088
NCI NIH HHS - United States
R01 CA076366
NCI NIH HHS - United States
MC_QA137853
Medical Research Council - United Kingdom
U01 CA097735
NCI NIH HHS - United States
P30 CA047904
NCI NIH HHS - United States
U19 CA148107
NCI NIH HHS - United States
T32 ES013678
NIEHS NIH HHS - United States
UG1 CA189974
NCI NIH HHS - United States
HHSN271201100004C
NIA NIH HHS - United States
Department of Health - United Kingdom
R01 CA151993
NCI NIH HHS - United States
P30 CA014089
NCI NIH HHS - United States
R01 CA189184
NCI NIH HHS - United States
P50 CA127003
NCI NIH HHS - United States
C490/A16561
Cancer Research UK - United Kingdom
U01 CA206110
NCI NIH HHS - United States
1000143
Medical Research Council - United Kingdom
19167
Cancer Research UK - United Kingdom
U01 CA167551
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
HHSN261201500005C
NCI NIH HHS - United States
R35 CA197735
NCI NIH HHS - United States
HHSN268201100004C
WHI NIH HHS - United States
C570/A16491
Cancer Research UK - United Kingdom
UM1 CA182883
NCI NIH HHS - United States
G0401527
Medical Research Council - United Kingdom
R01 CA201407
NCI NIH HHS - United States
U01 CA122839
NCI NIH HHS - United States
UM1 CA167552
NCI NIH HHS - United States
MR/M012190/1
Medical Research Council - United Kingdom
R01 CA207371
NCI NIH HHS - United States
C588/A19167
Cancer Research UK - United Kingdom
U01 CA074800
NCI NIH HHS - United States
HHSN268201100046C
NHLBI NIH HHS - United States
HHSN268201100003C
WHI NIH HHS - United States
R01 CA042182
NCI NIH HHS - United States
U01 CA074794
NCI NIH HHS - United States
U01 CA167552
NCI NIH HHS - United States
U01 CA074806
NCI NIH HHS - United States
MC_PC_12028
Medical Research Council - United Kingdom
P01 CA196569
NCI NIH HHS - United States
MC_PC_17228
Medical Research Council - United Kingdom
HHSN268201100002C
WHI NIH HHS - United States
R01 CA136726
NCI NIH HHS - United States
UM1 CA186107
NCI NIH HHS - United States
P01 CA055075
NCI NIH HHS - United States
25004
Cancer Research UK - United Kingdom
U24 CA097735
NCI NIH HHS - United States
U24 CA074799
NCI NIH HHS - United States
R03 CA153323
NCI NIH HHS - United States
R01 CA097325
NCI NIH HHS - United States
10589
Cancer Research UK - United Kingdom
HHSN268201200008I
NHLBI NIH HHS - United States
K05 CA152715
NCI NIH HHS - United States
001
World Health Organization - International
R01 CA197350
NCI NIH HHS - United States
MR/L01629X/1
Medical Research Council - United Kingdom
R01 CA063464
NCI NIH HHS - United States
P01 CA033619
NCI NIH HHS - United States
U01 CA074783
NCI NIH HHS - United States
P30 CA015704
NCI NIH HHS - United States
PubMed
31884074
PubMed Central
PMC7152801
DOI
10.1053/j.gastro.2019.12.020
PII: S0016-5085(19)41951-3
Knihovny.cz E-zdroje
- Klíčová slova
- CRC, GWAS, Risk Factors, Signal Transduction,
- MeSH
- hodnocení rizik metody MeSH
- IGFBP-3 krev genetika MeSH
- incidence MeSH
- insulinu podobný růstový faktor I analýza genetika MeSH
- insulinu podobný růstový faktor II analýza MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory krev epidemiologie genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mendelovská randomizace MeSH
- nádorové biomarkery krev genetika MeSH
- následné studie MeSH
- registrace statistika a číselné údaje MeSH
- rizikové faktory MeSH
- senioři MeSH
- sexuální faktory MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Geografické názvy
- Spojené království epidemiologie MeSH
- Názvy látek
- IGF1 protein, human MeSH Prohlížeč
- IGF2 protein, human MeSH Prohlížeč
- IGFBP-3 MeSH
- IGFBP3 protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor I MeSH
- insulinu podobný růstový faktor II MeSH
- nádorové biomarkery MeSH
BACKGROUND & AIMS: Human studies examining associations between circulating levels of insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3) and colorectal cancer risk have reported inconsistent results. We conducted complementary serologic and Mendelian randomization (MR) analyses to determine whether alterations in circulating levels of IGF1 or IGFBP3 are associated with colorectal cancer development. METHODS: Serum levels of IGF1 were measured in blood samples collected from 397,380 participants from the UK Biobank, from 2006 through 2010. Incident cancer cases and cancer cases recorded first in death certificates were identified through linkage to national cancer and death registries. Complete follow-up was available through March 31, 2016. For the MR analyses, we identified genetic variants associated with circulating levels of IGF1 and IGFBP3. The association of these genetic variants with colorectal cancer was examined with 2-sample MR methods using genome-wide association study consortia data (52,865 cases with colorectal cancer and 46,287 individuals without [controls]) RESULTS: After a median follow-up period of 7.1 years, 2665 cases of colorectal cancer were recorded. In a multivariable-adjusted model, circulating level of IGF1 associated with colorectal cancer risk (hazard ratio per 1 standard deviation increment of IGF1, 1.11; 95% confidence interval [CI] 1.05-1.17). Similar associations were found by sex, follow-up time, and tumor subsite. In the MR analyses, a 1 standard deviation increment in IGF1 level, predicted based on genetic factors, was associated with a higher risk of colorectal cancer risk (odds ratio 1.08; 95% CI 1.03-1.12; P = 3.3 × 10-4). Level of IGFBP3, predicted based on genetic factors, was associated with colorectal cancer risk (odds ratio per 1 standard deviation increment, 1.12; 95% CI 1.06-1.18; P = 4.2 × 10-5). Colorectal cancer risk was associated with only 1 variant in the IGFBP3 gene region (rs11977526), which also associated with anthropometric traits and circulating level of IGF2. CONCLUSIONS: In an analysis of blood samples from almost 400,000 participants in the UK Biobank, we found an association between circulating level of IGF1 and colorectal cancer. Using genetic data from 52,865 cases with colorectal cancer and 46,287 controls, a higher level of IGF1, determined by genetic factors, was associated with colorectal cancer. Further studies are needed to determine how this signaling pathway might contribute to colorectal carcinogenesis.
Behavioral and Epidemiology Research Group American Cancer Society Atlanta Georgia
Cancer Epidemiology Unit Nuffield Department of Population Health University of Oxford Oxford UK
Center for Public Health Genomics University of Virginia Charlottesville Virginia
CESP Université Paris Descartes France
CIBER in Epidemiology and Public Health University of León León Spain
Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore Maryland
Department of Family Medicine University of Virginia Charlottesville Virginia
Department of Internal Medicine University of Utah Salt Lake City Utah
Department of Medicine 1 University Hospital Dresden Technische Universität Dresden Dresden Germany
Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany
Division of Human Nutrition and Health Wageningen University and Research Wageningen the Netherlands
Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori Milan Italy
Institute for Health Research Kaiser Permanente Colorado Denver Colorado
Institute of Cancer Research Department of Medicine 1 Medical University Vienna Vienna Austria
Institute of Environmental Medicine Karolinska Institute Stockholm Sweden
Institute of Medical Research at St James's University of Leeds Leeds UK
Memorial University of Newfoundland Discipline of Genetics St John's Canada
Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle Washington
Section of Nutrition and Metabolism International Agency for Research on Cancer Lyon France
Service de Génétique Médicale Centre Hospitalier Universitaire Nantes Nantes France
SWOG Statistical Center Fred Hutchinson Cancer Research Center Seattle Washington
University of Hawaii Cancer Center Honolulu Hawaii
University of Southern California Preventive Medicine Los Angeles California
Zobrazit více v PubMed
Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8:915. PubMed
Samani A.A., Yakar S., LeRoith D. The role of the IGF System in Cancer growth and metastasis: overview and recent insights. Endocr Rev. 2007;28:20–47. PubMed
Kelley K.M., Oh Y., Gargosky S.E. Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol. 1996;28:619–637. PubMed
Oh Y., Muller H.L., Ng L. Transforming growth factor- beta-induced cell growth inhibition in human breast cancer cells is mediated through insulin-like growth factor-binding protein-3 action. J Biol Chem. 1995;270:13589–13592. PubMed
Baxter R.C. Signalling pathways involved in antiproliferative effects of IGFBP-3: a review. Mol Pathol. 2001;54:145–148. PubMed PMC
Ma J., Pollak M.N., Giovannucci E. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst. 1999;91:620–625. PubMed
Kaaks R., Toniolo P., Akhmedkhanov A. Serum C-Peptide, Insulin-Like Growth Factor (IGF)-I, IGF-Binding Proteins, and Colorectal Cancer Risk in Women. J Natl Cancer Inst. 2000;92:1592–1600. PubMed
Gunter M.J., Hoover D.R., Yu H. Insulin, insulin-like growth factor-i, endogenous estradiol, and risk of colorectal cancer in postmenopausal women. Cancer Res. 2008;68:329–337. PubMed PMC
Otani T., Iwasaki M., Sasazuki S. Plasma C-peptide, insulin-like growth factor-I, insulin-like growth factor binding proteins and risk of colorectal cancer in a nested case-control study: the Japan public health center-based prospective study. Int J Cancer. 2007;120:2007–2012. PubMed
Palmqvist R., Stattin P., Rinaldi S. Plasma insulin, IGF-binding proteins-1 and -2 and risk of colorectal cancer: a prospective study in northern Sweden. Int J Cancer. 2003;107:89–93. PubMed
Rinaldi S., Cleveland R., Norat T. Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies. Int J Cancer. 2010;126:1702–1715. PubMed
Probst-Hensch N.M., Yuan J.M., Stanczyk F.Z. IGF-1, IGF-2 and IGFBP-3 in prediagnostic serum: association with colorectal cancer in a cohort of Chinese men in Shanghai. Br J Cancer. 2001;85:1695–1699. PubMed PMC
Giovannucci E., Pollak M.N., Platz E.A. A prospective study of plasma insulin-like growth factor-1 and binding protein-3 and risk of colorectal neoplasia in women. Cancer Epidemiol Biomarkers Prev. 2000;9:345–349. PubMed
Wei E.K., Ma J., Pollak M.N. A prospective study of C-peptide, insulin-like growth factor-I, insulin-like growth factor binding protein-1, and the risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev. 2005;14:850–855. PubMed
Fred Hutchinson Cancer Research Center Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) https://www.fredhutch.org/en/research/divisions/public-health-sciences-division/research/cancer-prevention/genetics-epidemiology-colorectal-cancer-consortium-gecco.html Available at:
Allen N., Sudlow C., Downey P. UK Biobank: current status and what it means for epidemiology. Health Policy and Technology. 2012;1:123–126.
UK-Biobank UK Biobank. Protocol for a large-scale prospective epidemiological resources. 2010. http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf Available at: Accessed April 1, 2018.
Hosgood H.D., Gunter M.J., Murphy N. The relation of obesity-related hormonal and cytokine levels with multiple myeloma and non-Hodgkin lymphoma. Front Oncol. 2018;8:103. PubMed PMC
UK-Biobank UK Biobank Biomarker Project - Companion Document to Accompany Serum Biomarker Data. Prepared for: UK Biobank Showcase. 2019;Volume 1 Available at: http://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/serum_biochemistry.pdf. Accessed June 1, 2019.
Schoenfeld D. Partial residuals for the proportional hazards regression model. Biometrika. 1982;69:239–241.
Clarke R., Shipley M., Lewington S. Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies. Am J Epidemiol. 1999;150:341–353. PubMed
MacMahon S., Peto R., Collins R. Blood pressure, stroke, and coronary heart disease: Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335:765–774. PubMed
Clarke R., Emberson J.R., Breeze E. Biomarkers of inflammation predict both vascular and non-vascular mortality in older men. Eur Heart J. 2008;29:800–809. PubMed
Murphy N., Strickler H.D., Stanczyk F.Z. A prospective evaluation of endogenous sex hormone levels and colorectal cancer risk in postmenopausal women. J Natl Cancer Inst. 2015;107(10) PubMed PMC
Aleksandrova K., Jenab M., Boeing H. Circulating C-reactive protein concentrations and risks of colon and rectal cancer: a nested case-control study within the European prospective investigation into cancer and nutrition. Am J Epidemiol. 2010;172:407–418. PubMed
Mori N., Sawada N., Iwasaki M. Circulating sex hormone levels and colorectal cancer risk in Japanese postmenopausal women: the JPHC nested case–control study. Int J Cancer. 2019;145:1238–1244. PubMed
Rinaldi S., Rohrmann S., Jenab M. Glycosylated hemoglobin and risk of colorectal cancer in men and women, the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev. 2008;17:3108–3115. PubMed
Harrell F. Springer; New York: 2001. Regression Modeling Strategies: With applications to linear models, logistic regression, and survival analysis.
Sinnott-Armstrong N., Tanigawa Y., Amar D. Genetics of 38 blood and urine biomarkers in the UK Biobank. bioRxiv. 2019:660506. PubMed PMC
Teumer A., Qi Q., Nethander M. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. Aging Cell. 2016;15:811–824. PubMed PMC
Huyghe J.R., Bien S.A., Harrison T.A. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019;51:76–87. PubMed PMC
Brion M.-J.A., Shakhbazov K., Visscher P.M. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42:1497–1501. PubMed PMC
Burgess S., Butterworth A., Thompson S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiol. 2013;37:658–665. PubMed PMC
Burgess S., Scott R.A., Timpson N.J. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30:543–552. PubMed PMC
Bowden J., Davey Smith G., Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–525. PubMed PMC
Bowden J., Davey Smith G., Haycock P.C. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–314. PubMed PMC
Verbanck M., Chen C.-Y., Neale B. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–698. PubMed PMC
Davey Smith G., Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23:R89–R98. PubMed PMC
Valentinis B., Baserga R. IGF-I receptor signalling in transformation and differentiation. Mol Pathol. 2001;54:133–137. PubMed PMC
Sekharam M., Zhao H., Sun M. Insulin-like growth factor 1 receptor enhances invasion and induces resistance to apoptosis of colon cancer cells through the Akt/Bcl-xL Pathway. Cancer Res. 2003;63:7708–7716. PubMed
Lahm H., Amstad P., Wyniger J. Blockade of the insulin-like growth-factor-I receptor inhibits growth of human colorectal cancer cells: evidence of a functional IGF-II-mediated autocrine loop. Int J Cancer. 1994;58:452–459. PubMed
Levine Morgan E., Suarez Jorge A., Brandhorst S. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19:407–417. PubMed PMC
Bradbury K.E., Balkwill A., Tipper S.J. The association of plasma IGF-I with dietary, lifestyle, anthropometric, and early life factors in postmenopausal women. Growth Horm IGF Res. 2015;25:90–95. PubMed
Zhu K., Meng X., Kerr D.A. The effects of a two-year randomized, controlled trial of whey protein supplementation on bone structure, IGF-1, and urinary calcium excretion in older postmenopausal women. J Bone Miner Res. 2011;26:2298–2306. PubMed
Nishida Y., Matsubara T., Tobina T. Effect of low-intensity aerobic exercise on insulin-like growth factor-I and insulin-like growth factor-binding proteins in healthy men. Int J Endocrinol. 2010;2010:452820. PubMed PMC
Vigneri P.G., Tirrò E., Pennisi M.S. The insulin/IGF system in colorectal cancer development and resistance to therapy. Front Oncol. 2015;5:230. PubMed PMC
Deal C., Ma J., Wilkin Fo. Novel promoter polymorphism in insulin-like growth factor-binding protein-3: correlation with serum levels and interaction with known regulators1. J Clin Endocrinol Metab. 2001;86:1274–1280. PubMed
Kamat M.A., Blackshaw J.A., Young R. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35:4851–4853. PubMed PMC
Cui H., Cruz-Correa M., Giardiello F.M. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science. 2003;299:1753–1755. PubMed
Cruz-Correa M., Cui H., Giardiello F.M. Loss of imprinting of insulin growth factor II gene: a potential heritable biomarker for colon neoplasia predisposition. Gastroenterology. 2004;126:964–970. PubMed
Unger C., Kramer N., Unterleuthner D. Stromal-derived IGF2 promotes colon cancer progression via paracrine and autocrine mechanisms. Oncogene. 2017;36:5341. PubMed
Morris J.K., George L.M., Wu T. Insulin-like growth factors and cancer: no role in screening. Evidence from the BUPA study and meta-analysis of prospective epidemiological studies. Br J Cancer. 2006;95:112–117. PubMed PMC
Young N.J., Metcalfe C., Gunnell D. A cross-sectional analysis of the association between diet and insulin-like growth factor (IGF)-I, IGF-II, IGF-binding protein (IGFBP)-2, and IGFBP-3 in men in the United Kingdom. Cancer Causes Control. 2012;23:907–917. PubMed
Sinnott−Armstrong N., Tanigawa Y., Amar D. Genetics of 38 blood and urine biomarkers in the UK Biobank. bioRxiv. 2019:660506. PubMed PMC
Teumer A., Qi Q., Nethander M. Genomewide meta−analysis identifies loci associated with IGF−I and IGFBP3 levels with impact on age−related traits. Aging Cell. 2016;15:811–824. PubMed PMC
Non-Genomic Hallmarks of Aging-The Review
Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study