• This record comes from PubMed

Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants: a protocol for the SafeBoosC randomised clinical phase III trial

. 2019 Dec 30 ; 20 (1) : 811. [epub] 20191230

Language English Country England, Great Britain Media electronic

Document type Clinical Trial Protocol, Journal Article

Grant support
18-3-0133 Elsass Fonden
N/A Svend Andersen Fonden

Links

PubMed 31888764
PubMed Central PMC6937938
DOI 10.1186/s13063-019-3955-6
PII: 10.1186/s13063-019-3955-6
Knihovny.cz E-resources

BACKGROUND: Cerebral oxygenation monitoring may reduce the risk of death and neurologic complications in extremely preterm infants, but no such effects have yet been demonstrated in preterm infants in sufficiently powered randomised clinical trials. The objective of the SafeBoosC III trial is to investigate the benefits and harms of treatment based on near-infrared spectroscopy (NIRS) monitoring compared with treatment as usual for extremely preterm infants. METHODS/DESIGN: SafeBoosC III is an investigator-initiated, multinational, randomised, pragmatic phase III clinical trial. Inclusion criteria will be infants born below 28 weeks postmenstrual age and parental informed consent (unless the site is using 'opt-out' or deferred consent). Exclusion criteria will be no parental informed consent (or if 'opt-out' is used, lack of a record that clinical staff have explained the trial and the 'opt-out' consent process to parents and/or a record of the parents' decision to opt-out in the infant's clinical file); decision not to provide full life support; and no possibility to initiate cerebral NIRS oximetry within 6 h after birth. Participants will be randomised 1:1 into either the experimental or control group. Participants in the experimental group will be monitored during the first 72 h of life with a cerebral NIRS oximeter. Cerebral hypoxia will be treated according to an evidence-based treatment guideline. Participants in the control group will not undergo cerebral oxygenation monitoring and will receive treatment as usual. Each participant will be followed up at 36 weeks postmenstrual age. The primary outcome will be a composite of either death or severe brain injury detected on any of the serial cranial ultrasound scans that are routinely performed in these infants up to 36 weeks postmenstrual age. Severe brain injury will be assessed by a person blinded to group allocation. To detect a 22% relative risk difference between the experimental and control group, we intend to randomise a cohort of 1600 infants. DISCUSSION: Treatment guided by cerebral NIRS oximetry has the potential to decrease the risk of death or survival with severe brain injury in preterm infants. There is an urgent need to assess the clinical effects of NIRS monitoring among preterm neonates. TRIAL REGISTRATION: ClinicalTrial.gov, NCT03770741. Registered 10 December 2018.

Copenhagen Trial Unit Rigshospitalet Blegdamsvej 9 2100 Copenhagen Denmark

Department of Cardiology Holbæk Hospital Smedelundsgade 60 4300 Holbæk Denmark

Department of Clinical Sciences and Community Health University of Milan Via Francesco Sforza 35 20122 Milan Italy

Department of Intensive Care Rigshospitalet Blegdamsvej 9 2100 Copenhagen Denmark

Department of Neonatology Centro hospitalar Universitário de São João Alameda Prof Hernâni Monteiro 4200 319 Porto Portugal

Department of Neonatology Children's Hospital of Fudan University 399 Wanyuan Rd Minhang Qu Shanghai Shi China

Department of Neonatology Children's University Hospital of Zürich Steinweisstrasse 75 8037 Zurich Switzerland

Department of Neonatology Gazi University Hospital Emniyet Mahallesi Gazeteci Yazar Muammer Yaşar Bostancı Sokak 06560 Yenimahalle Ankara Turkey

Department of Neonatology Hospices Civil De Lyon 3 Quai des Célestins 69002 Lyon France

Department of Neonatology La Paz University Hospital Paseo De La Castellana 261 28046 Madrid Spain

Department of Neonatology Oslo University Hospital Kirkeveien 166 0450 Oslo Norway

Department of Neonatology Poznan University of Medical Sciences Polna 33 60 535 Poznań Poland

Department of Neonatology Rigshospitalet Blegdamsvej 9 2100 Copenhagen Denmark

Department of Neonatology Royal Hospital for Children 1345 Govan Rd Glasgow G51 4TF UK

Department of Neonatology University Children's Hospital Tuebingen Hoppe Seyler Straße 1 72076 Tuebingen Germany

Department of Neonatology University Hospital Leuven Herestraat 49 Leuven Belgium

Department of Neonatology University Hospital Motol 5 Uvalu 84 150 06 Prague 5 Czech Republic

Department of Neonatology Wilhelmina Children's Hospital Lundlaan 6 3584 EA Utrecht Netherlands

Department of Pediatrics Medical University of Graz Auenbruggerplatz 30 Graz Austria

Department of Regional Health Research The Faculty of Health Sciences University of Southern Denmark Odense Denmark

Division of Newborn Medicine Hackensack Meridian Health Mountainside Medical Center 1 Bay Ave Montclair NJ USA

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Via della Commenda 12 IT 20122 Milan Italy

Infant Centre and Department of Paediatrics and Child Health University College Cork College Road Cork Ireland

Neonatal Intensive Care Unit Cambridge University Hospitals NHS Foundation Trust Hills Road Cambridge CB2 0SW UK

NICU Department of Pediatrics University General Hospital of Patras 265 04 Patras Greece

See more in PubMed

Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379:2162–2172. doi: 10.1016/S0140-6736(12)60820-4. PubMed DOI

Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126:443–456. doi: 10.1542/peds.2009-2959. PubMed DOI PMC

Adams-Chapman I, Heyne RJ, DeMauro SB, Duncan AF, Hintz SR, Pappas A, et al. Neurodevelopmental impairment among extremely preterm infants in the Neonatal Research Network. Pediatrics. 2018;141:e20173091. doi: 10.1542/peds.2017-3091. PubMed DOI PMC

Volpe JJ. Brain injury in the premature infant: neuropathology, clinical aspects and pathogenesis. Semin Pediatr Neurol. 1998;5:135–151. doi: 10.1016/S1071-9091(98)80030-2. PubMed DOI

Ward RM, Beachy JC. Neonatal complications following preterm birth. BJOG An Int J Obstet Gynaecol. 2003;110:8–16. doi: 10.1046/j.1471-0528.2003.00012.x. PubMed DOI

Behrman R, Butler AS. Preterm birth: Causes, consequences and prevention. Institute of Medicine. Washington, D.C.: National Academies Press; 2007. PubMed

Stephens BE, Vohr BR. Neurodevelopmental outcome of the premature infant. Pediatr Clin N Am. 2009;56:631–646. doi: 10.1016/j.pcl.2009.03.005. PubMed DOI

Kluckow M. Low systemic blood flow and pathophysiology of the preterm transitional circulation. Early Hum Dev. 2005;81:429–437. doi: 10.1016/j.earlhumdev.2005.03.006. PubMed DOI

Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–534. doi: 10.1016/S0022-3476(78)80282-0. PubMed DOI

Guzzetta F, Shackelford GD, Volpe S, Perlman JM, Volpe JJ. Periventricular intraparenchymal echodensities in the premature newborn: critical determinant of neurologic outcome. Pediatrics. 1986;78:995–1006. PubMed

Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–124. doi: 10.1016/S1474-4422(08)70294-1. PubMed DOI PMC

Cordeiro CN, Tsimis M, Burd I. Infections and brain development. Obstet Gynecol Surv. 2015;70:644–655. doi: 10.1097/OGX.0000000000000236. PubMed DOI PMC

Prado EL, Dewey KG. Nutrition and brain development in early life. Nutr Rev. 2014;72:267–284. doi: 10.1111/nure.12102. PubMed DOI

Perlman JM. White matter injury in the preterm infant: An important determination of abnormal neurodevelopment outcome. Early Hum Dev. 1998;53:99–120. doi: 10.1016/S0378-3782(98)00037-1. PubMed DOI

Greisen G, Vannucci RC. Is periventricular leucomalacia a result of hypoxic-ischaemic injury? Hypocapnia and the preterm brain. Biol Neonate. 2001;79:194–200. doi: 10.1159/000047090. PubMed DOI

Perlman M, Volpe J. Are venous circulatory abnormalities important in the pathogenesis of hemorrhagic and/or ischemic cerebral injury? Pediatrics. 1987;80:705–711. PubMed

Alderliesten T, Dix L, Baerts W, Caicedo A, van Huffel S, Naulaers G, et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res. 2016;79:55–64. doi: 10.1038/pr.2015.186. PubMed DOI

Hyttel-Sorensen S, Austin T, van Bel F, Benders M, Claris O, Dempsey E, et al. A phase II randomized clinical trial on cerebral near-infrared spectroscopy plus a treatment guideline versus treatment as usual for extremely preterm infants during the first three days of life (SafeBoosC): study protocol for a randomized controlled tria. Trials. 2013;14:120. doi: 10.1186/1745-6215-14-120. PubMed DOI PMC

Riera J, Hyttel-Sorensen S, Bravo MC, Cabañas F, López-Ortego P, Sanchez L, et al. The SafeBoosC phase II clinical trial: an analysis of the interventions related with the oximeter readings. Arch Dis Child Fetal Neonatal Ed. 2016;101:F333–F338. doi: 10.1136/archdischild-2015-308829. PubMed DOI PMC

European Medicines Agency, Committee for Human Medicinal Products . Guideline on Good Clinical Practice E6(R2) 2017.

Chan A-W, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586. PubMed DOI PMC

Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ. Therapeutic hypothermia for neonatal hypoxic–ischemic encephalopathy – where to from here? Front Neurol. 2015;6:198. PubMed PMC

Hansen ML, Pellicer A, Gluud C, Dempsey E, Mintzer J, Hyttel-Sorensen S, et al. Detailed statistical analysis plan for the SafeBoosC III trial: a multinational randomised clinical trial assessing treatment guided by cerebral oxygenation monitoring versus treatment as usual in extremely preterm infants. Trials. 2019;20:746. PubMed PMC

Pellicer A, Greisen G, Benders M, Claris O, Dempsey E, Fumagally M, et al. The SafeBoosC phase II randomised clinical trial: A treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants. Neonatology. 2013;104:171–178. doi: 10.1159/000351346. PubMed DOI

Kleiser S, Ostojic D, Andresen B, Nasseri N, Isler H, Scholkmann F, et al. Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension. Biomed Opt Express. 2018;9:86. doi: 10.1364/BOE.9.000086. PubMed DOI PMC

Vermont Oxford Network . Manual of operations: Part 2 data definitions & infant data forms. 2018.

Hyttel-Sørensen S, Pellicer A, Alderliesten T, Austin T, Van Bel F, Benders M, et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ. 2015;350:1–11. doi: 10.1136/bmj.g7635. PubMed DOI PMC

Yelland LN, Sullivan TR, Collins CT, Price DJ, McPhee AJ, Lee KJ. Accounting for twin births in sample size calculations for randomised trials. Paediatr Perinat Epidemiol. 2018;32:380–387. doi: 10.1111/ppe.12471. PubMed DOI

Jakobsen JC, Gluud C, Winkel P, Lange T, Wetterslev J. The thresholds for statistical and clinical significance – a five-step procedure for evaluation of intervention effects in randomised clinical trials. BMC Med Res Methodol. 2014;14:34. doi: 10.1186/1471-2288-14-34. PubMed DOI PMC

Greisen G, van Bel F. Equipoise is necessary for randomising patients to clinical trials. Acta Paediatr Int J Paediatr. 2016;105:1259–1260. doi: 10.1111/apa.13549. PubMed DOI

Hyttel-Sørensen S, Greisen G, Als-Nielsen B, Gluud C. Cerebral near-infrared spectroscopy monitoring for prevention of brain injury in very preterm infants. Cochrane Database Syst Rev. 2017;9:CD011506. PubMed PMC

Hunter CL, Oei JL, Suzuki K, Lui K, Schindler T. Patterns of use of near-infrared spectroscopy in neonatal intensive care units: international usage survey. Acta Paediatr. 2018;107:1198–1204. doi: 10.1111/apa.14271. PubMed DOI

Bevan PJW. Should cerebral near-infrared spectroscopy be standard of care in adult cardiac surgery? Hear Lung Circ. 2015;24:544–550. doi: 10.1016/j.hlc.2015.01.011. PubMed DOI

Savović J, Turner RM, Mawdsley D, Jones HE, Beynon R, Higgins JPT, et al. Association between risk-of-bias assessments and results of randomized trials in Cochrane reviews: The ROBES Meta-Epidemiologic Study. Am J Epidemiol. 2018;187:1113–1122. doi: 10.1093/aje/kwx344. PubMed DOI PMC

Hrobjartsson A, Thomsen ASS, Emanuelsson F, Tendal B, Hilden J, Boutron I, et al. Observer bias in randomized clinical trials with measurement scale outcomes: a systematic review of trials with both blinded and nonblinded assessors. Can Med Assoc J. 2013;185:E201–E211. doi: 10.1503/cmaj.120744. PubMed DOI PMC

Hróbjartsson A, Thomsen ASS, Emanuelsson F, Tendal B, Rasmussen JV, Hilden J, et al. Observer bias in randomized clinical trials with time-to-event outcomes: systematic review of trials with both blinded and non-blinded outcome assessors. Int J Epidemiol. 2014;43:937–948. doi: 10.1093/ije/dyt270. PubMed DOI

Hróbjartsson A, Emanuelsson F, Skou Thomsen AS, Hilden J, Brorson S. Bias due to lack of patient blinding in clinical trials. A systematic review of trials randomizing patients to blind and nonblind sub-studies. Int J Epidemiol. 2014;43:1272–1283. doi: 10.1093/ije/dyu115. PubMed DOI PMC

Anthon CT, Granholm A, Perner A, Laake JH, Møller MH. No firm evidence that lack of blinding affects estimates of mortality in randomized clinical trials of intensive care interventions: a systematic review and meta-analysis. J Clin Epidemiol. 2018;100:71–81. doi: 10.1016/j.jclinepi.2018.04.016. PubMed DOI

Hintz SR, Slovis T, Bulas D, Van Meurs KP. Interobserver reliability and accuracy of cranial ultrasound interpretation in premature infants. J Pediatr. 2007;150:592–596. doi: 10.1016/j.jpeds.2007.02.012. PubMed DOI PMC

Campbell M. Framework for design and evaluation of complex interventions to improve health. BMJ. 2000;321:694–696. doi: 10.1136/bmj.321.7262.694. PubMed DOI PMC

Zwarenstein M, Treweek S, Gagnier JJ, Altman DG, Tunis S, Haynes B, et al. Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ. 2008;337:a2390. doi: 10.1136/bmj.a2390. PubMed DOI PMC

Boutron I, Altman DG, Moher D, Schulz KF, Ravaud P. CONSORT statement for randomized trials of nonpharmacologic treatments: A 2017 update and a CONSORT extension for nonpharmacologic trial abstracts. Ann Intern Med. 2017;167:40. doi: 10.7326/M17-0046. PubMed DOI

Brierley J, Larcher V. Emergency research in children: options for ethical recruitment. J Med Ethics. 2011;37:429–432. doi: 10.1136/jme.2010.040667. PubMed DOI

Beauchamp TL, Childress JF, Press. OU . Principles of biomedical ethics. 7. Oxford: Oxford University Press; 2012.

Mason SA, Allmark PJ. Obtaining informed consent to neonatal randomised controlled trials: interviews with parents and clinicians in the Euricon study. Lancet. 2000;356:2045–2051. doi: 10.1016/S0140-6736(00)03401-2. PubMed DOI

Gale C, Juszczak E. A paediatrician’s guide to clinical trials units. Arch Dis Child Educ Pract Ed. 2016;101:265–267. doi: 10.1136/archdischild-2015-310036. PubMed DOI PMC

Gale C, Hyde MJ, Modi N. Research ethics committee decision-making in relation to an efficient neonatal trial. Arch Dis Child Fetal Neonatal Ed. 2017;102:F291–F298. doi: 10.1136/archdischild-2016-310935. PubMed DOI PMC

Hafström M, Källén K, Serenius F, Maršál K, Rehn E, Drake H, et al. Cerebral palsy in extremely preterm infants. Pediatrics. 2018;141:e20171433. doi: 10.1542/peds.2017-1433. PubMed DOI

Roberts G, Anderson PJ, De Luca C, Doyle LW. Changes in neurodevelopmental outcome at age eight in geographic cohorts of children born at 22-27 weeks’ gestational age during the 1990s. Arch Dis Child Fetal Neonatal Ed. 2010;95:F90–F94. doi: 10.1136/adc.2009.165480. PubMed DOI

Stanley F, Blair E, Alberman E. Cerebral palsies: epidemiology and casual pathways. Cambridge: Cambridge University Press; 2000.

See more in PubMed

ClinicalTrials.gov
NCT03770741

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...