Design, synthesis, and antiprotozoal evaluation of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
31899980
PubMed Central
PMC6968685
DOI
10.1080/14756366.2019.1706502
Knihovny.cz E-zdroje
- Klíčová slova
- Antimalarial activity, G-quadruplex, antileishmanial activity, antitrypanosomal activity, quinoline-like derivatives,
- MeSH
- antiprotozoální látky chemická syntéza chemie farmakologie MeSH
- buňky Hep G2 MeSH
- chinoliny chemická syntéza chemie farmakologie MeSH
- Leishmania donovani účinky léků MeSH
- lidé MeSH
- Plasmodium falciparum účinky léků MeSH
- racionální návrh léčiv * MeSH
- Trypanosoma brucei brucei účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiprotozoální látky MeSH
- chinoliny MeSH
A series of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline, and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives was designed, synthesised, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiprotozoal activity with IC50 values in the µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The quinoline 1c was identified as the most potent antimalarial candidate with a ratio of cytotoxic to antiparasitic activities of 97 against the P. falciparum CQ-sensitive strain 3D7. The quinazoline 3h was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 43 on T. brucei brucei strain. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma are possible targets of this kind of nitrogen heterocyclic compounds, we have also investigated stabilisation of the Plasmodium and Trypanosoma telomeric G-quadruplexes by our best compounds through FRET melting assays.
Institute of Biophysics of the CAS Brno Czech Republic
IRD AP HM SSA VITROME Aix Marseille University Marseille France
PREM UMR5254 UPPA CNRS Technopole Hélioparc Université de Pau Pau France
UFR de Pharmacie AGIR Université de Picardie Jules Verne Amiens France
Zobrazit více v PubMed
World Health Organization . World malaria report 2018. Geneva, Switzerland: World Health Organization; 2018.
Yeung S, Socheat D, Moorthy VS, et al. . Artemisinin resistance on the Thai-Cambodian border. Lancet 2009;374:1418–19. PubMed
Müller O, Sié A, Meissner P, et al. . Artemisinin resistance on the Thai-Cambodian border. Lancet 2009;374:1419. PubMed
Ariey F, Witkowski B, Amaratunga C, et al. . A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 2014;505:50–5. PubMed PMC
World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy. Geneva, Switzerland: World Health Organization; 2018.
World Health Organization . Guidelines for the treatment of malaria. 3rd ed. Geneva, Switzerland: World Health Organization; 2015.
De D, Krogstad FM, Cogswell FB, et al. Aminoquinolines that circumvent resistance in Plasmodium falciparum in vitro. Am J Trop Med Hyg 1996;55:579–83. PubMed
Ridley RG, Hofheinz W, Matile H, et al. . 4-aminoquinoline analogs of chloroquine with shortened side chains retain activity against chloroquine-resistant Plasmodium falciparum. Antimicrob Agents Chemother 1996;40:1846–54. PubMed PMC
Rout S, Mahapatra RK.. Plasmodium falciparum: multidrug resistance. Chem Biol Drug Des 2019;93:737–59. PubMed
Ashley EA, Phyo AP.. Drugs in development for malaria. Drugs 2018;78:861–79. PubMed PMC
Hu YQ, Gao C, Zhang S, et al. . Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur J Med Chem 2017;139:22–47. PubMed
Hussaini SM. Therapeutic significance of quinolines: a patent review. Expert Opin Ther Pat 2016;26:1201–21. PubMed
Parhizgar AR, Tahghighi A.. Introducing new antimalarial analogues of chloroquine and amodiaquine: a narrative review. Iran J Med Sci 2017;42:115–28. PubMed PMC
Nqoro X, Tobeka N, Aderibigbe BA.. Quinoline-based hybrid compounds with antimalarial activity. Molecules 2017;22:2268. PubMed PMC
Deshpande S, Kuppast B.. 4-Aminoquinolines: an overview of antimalarial chemotherapy. Med Chem 2016;06:1–11.
Kumar S, Singh RK, Patial B, et al. . Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria. J Enzyme Inhib Med Chem 2016;31:173–86. PubMed
Manohar S, Tripathi M, Rawat DS.. 4-aminoquinoline based molecular hybrids as antimalarials: an overview. Curr Top Med Chem 2014;14:1706–33. PubMed
O’Neill PM, Ward SA, Berry NG, et al. . A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs. Curr Top Med Chem 2006;6:479–507. PubMed
Malmquist NA, Moss TA, Mecheri S, et al. . Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum. Proc Natl Acad Sci USA 2012;109:16708–13. PubMed PMC
Fröhlich T, Tsogoeva SB.. In Vivo and in vitro optimization of screening antimalarial hits toward lead molecules for preclinical development. J Med Chem 2016;59:9668–71. PubMed
Gilson PR, Tan C, Jarman KE, et al. . Optimization of 2-anilino 4-amino substituted quinazolines into potent antimalarial agents with oral in vivo activity. J Med Chem 2017;60:1171–88. PubMed
Baragaña B, Norcross NR, Wilson C, et al. . Discovery of a quinoline-4-carboxamide derivative with a novel mechanism of action, multistage antimalarial activity, and potent in vivo efficacy. J Med Chem 2016;59:9672–85. PubMed PMC
Lubin AS, Rueda-Zubiaurre A, Matthews H, et al. . Development of a photo-cross-linkable diaminoquinazoline inhibitor for target identification in Plasmodium falciparum. ACS Infect Dis 2018;13:523–30. PubMed PMC
Burza S, Croft SL, Boelaert M.. Leishmaniasis. Lancet 2018;392:951–70. PubMed
Alvar J, Canavate C, Gutierrez-Solar B, et al. . Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev 1997;10:298–319. PubMed PMC
World Health Organization . WHO Technical report series n°975, research priorities for chagas disease, human African trypanosomiasis and leishmaniasis. Geneva, Switzerland: World Health Organization; 2012: 116. PubMed
World Health Organization. WHO interim guidelines for the treatment of gambiense human African trypanosomiasis. Geneva, Switzerland: World Health Organization; 2019. PubMed
Guillon J, Grellier P, Labaied M, et al. . Synthesis, antimalarial activity, and molecular modeling of new pyrrolo[1,2-a]quinoxalines, bispyrrolo[1,2-a]quinoxalines, bispyrido[3,2-e]pyrrolo[1,2-a]pyrazines, and bispyrrolo[1,2-a]thieno[3,2-e]pyrazines. J Med Chem 2004;47:1997–2009. PubMed
Guillon J, Forfar I, Mamani-Matsuda M, et al. . Synthesis, analytical behaviour and biological evaluation of new 4-substituted pyrrolo[1,2-a]quinoxalines as antileishmanial agents. Bioorg Med Chem 2007;15:194–210. PubMed
Guillon J, Forfar I, Desplat V, et al. . Synthesis of new 4-(E)-alkenylpyrrolo[1,2-a]quinoxalines as antileishmanial agents by Suzuki-Miyaura cross-coupling reactions. J Enzyme Inhib Med Chem 2007;22:541–9. PubMed
Guillon J, Moreau S, Mouray E, et al. . New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity. Bioorg Med Chem 2008;16:9133–44. PubMed
Guillon J, Mouray E, Moreau S, et al. . New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity-Part II. Eur J Med Chem 2011;46:2310–26. PubMed
Ronga L, Del Favero M, Cohen A, et al. . Design, synthesis and biological evaluation of novel 4-alkapolyenylpyrrolo[1,2-a]quinoxalines as antileishmanial agents–part III. Eur J Med Chem 2014;81:378–93. PubMed
Guillon J, Cohen A, Gueddouda NM, et al. . Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives. J Enzyme Inhib Med Chem 2017;32:547–63. PubMed PMC
Guillon J, Cohen A, Das RN, et al. . Design, synthesis, and antiprotozoal evaluation of new 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives. Chem Biol Drug Des 2018;91:974–95. PubMed
Calvo EP, Wasserman M.. G-Quadruplex ligands: potent inhibitors of telomerase activity and cell proliferation in Plasmodium falciparum. Mol Biochem Parasitol 2016;207:33–8. PubMed
Tidwell R, Boykin D, Ismail M, et al. Dicationic compounds which selectively recognize G-quadruplex DNA, Patent EP-1792613-A2, 2007.
Leeder WM, Hummel NF, Göringer HU.. Multiple G-quartet structures in pre-edited mRNAs suggest evolutionary driving force for RNA editing in trypanosomes. Sci Rep 2016;6:29810. PubMed PMC
Lombraña R, Álvarez A, Fernández-Justel JM, et al. . Transcriptionally driven DNA replication program of the human parasite leishmania major. Cell Rep 2016;16:1774–86. PubMed
Bottius E, Bakhsis N, Scherf A.. Plasmodium falciparum telomerase: de novo telomere addition to telomeric and nontelomeric sequences and role in chromosome healing. Mol Cell Biol 1998;18:919–25. PubMed PMC
Raj DK, Das BR, Dash AP, et al. . Identification of telomerase activity in gametocytes of Plasmodium falciparum. Biochem Biophys Res Commun 2003;309:685–8. PubMed
De Cian A, Grellier P, Mouray E, et al. . Plasmodium telomeric sequences: structure, stability and quadruplex targeting by small compounds. ChemBioChem 2008;9:2730–9. PubMed
Desjardins RE, Canfield CJ, Haynes JD, et al. . Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 1979;16:710–18. PubMed PMC
Bennett TN, Paguio M, Gligorijevic B, et al. . Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrob Agents Chemother 2004;48:1807–10. PubMed PMC
Bacon DJ, Latour C, Lucas C, et al. . Comparison of a SYBR green I-based assay with a histidine-rich protein II enzyme-linked immunosorbent assay for in vitro antimalarial drug efficacy testing and application to clinical isolates. Antimicrob Agents Chemother 2007;51:1172–8. PubMed PMC
Kaddouri H, Nakache S, Houzé S, et al. . Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from africa by using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration. Antimicrob Agents Chemother 2006;50:3343–9. PubMed PMC
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63. PubMed
Emami SA, Zamanai Taghizadeh Rabe S, Ahi A, et al. . Inhibitory activity of eleven artemisia species from Iran against Leishmania major parasites. Iran J Basic Med Sci 2012;15:807–11. PubMed PMC
Räz B, Iten M, Grether-Bühler Y, et al. . The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop 1997;68:139–47. PubMed
Baltz T, Baltz D, Giroud C, et al. . Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J 1985;4:1273–7. PubMed PMC
De Cian A, Guittat L, Kaiser M, et al. . Fluorescence-based melting assays for studying quadruplex ligands. Methods 2007;42:183–95. PubMed
Belmonte-Reche E, Martínez-García M, Guédin A, et al. . G-quadruplex identification in the genome of protozoan parasites points to naphthalene diimide ligands as new antiparasitic agents. J Med Chem 2018;61:1231–40. PubMed PMC
Le S, Josse J, Husson F.. FactoMineR: an R package for multivariate analysis. J Stat Softw 2008;25:1–18.
Zeileis A, Hothorn T.. Diagnostic checking in regression relationships. R News 2002;2:7–10.
R Core Team. R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria: R Core Team; 2013.
Achelle S, Rodríguez-López J, Robin-le Guen F.. Synthesis and photophysical studies of a series of quinazoline chromophores. J Org Chem 2014;79:7564–71. PubMed
Jun JV, Petersson EJ, Chenoweth DM.. Rational design and facile synthesis of a highly tunable quinoline-based fluorescent small-molecule scaffold for live cell imaging. J Am Chem Soc 2018;140:9486–93. PubMed PMC
Kang D, Kim H, Shin C.. Compound for organic optoelectric device, organic light emitting device containing same, and display device containing said organic light emitting device, Patent EP-2842954, 2015.
G-quadruplexes in helminth parasites