Large Scale Fabrication of Ordered Gold Nanoparticle-Epoxy Surface Nanocomposites and Their Application as Label-Free Plasmonic DNA Biosensors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31904921
PubMed Central
PMC7307838
DOI
10.1021/acsami.9b20907
Knihovny.cz E-zdroje
- Klíčová slova
- DNA biosensor, localized surface plasmon resonance, nanobowled aluminum, nanoparticle lattice, surface nanocomposite,
- MeSH
- Giardia lamblia * MeSH
- kovové nanočástice chemie MeSH
- nanokompozity chemie MeSH
- povrchová plasmonová rezonance * MeSH
- protozoální DNA analýza MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální DNA MeSH
- zlato MeSH
A robust and scalable technology to fabricate ordered gold nanoparticle arrangements on epoxy substrates is presented. The nanoparticles are synthesized by solid-state dewetting on nanobowled aluminum templates, which are prepared by the selective chemical etching of porous anodic alumina (PAA) grown on an aluminum sheet with controlled anodic oxidation. This flexible fabrication technology provides proper control over the nanoparticle size, shape, and interparticle distance over a large surface area (several cm2), which enables the fine-tuning and optimization of their plasmonic absorption spectra for LSPR and SERS applications between 535 and 625 nm. The nanoparticles are transferred to the surface of epoxy substrates, which are subsequently selectively etched. The resulting nanomushrooms arrangements consist of ordered epoxy nanopillars with flat, disk-shaped nanoparticles on top, and their bulk refractive index sensitivity is between 83 and 108 nm RIU-1. Label-free DNA detection is successfully demonstrated with the sensors by using a 20 base pair long specific DNA sequence from the parasite Giardia lamblia. A red-shift of 6.6 nm in the LSPR absorbance spectrum was detected after the 2 h hybridization with 1 μM target DNA, and the achievable LOD was around 5 nM. The reported plasmonic sensor is one of the first surface AuNP/polymer nanocomposites ever reported for the successful label-free detection of DNA.
Zobrazit více v PubMed
Liedberg B.; Nylander C.; Lunström I. Surface Plasmon Resonance for Gas Detection and Biosensing. Sens. Actuators 1983, 4 (C), 299–304. 10.1016/0250-6874(83)85036-7. DOI
Nguyen H.; Park J.; Kang S.; Kim M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15 (5), 10481–10510. 10.3390/s150510481. PubMed DOI PMC
Homola J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108 (2), 462–493. 10.1021/cr068107d. PubMed DOI
Wong C. L.; Olivo M. Surface Plasmon Resonance Imaging Sensors: A Review. Plasmonics 2014, 9 (4), 809–824. 10.1007/s11468-013-9662-3. DOI
Chinowsky T. M.; Quinn J. G.; Bartholomew D. U.; Kaiser R.; Elkind J. L. Performance of the Spreeta 2000 Integrated Surface Plasmon Resonance Affinity Sensor. Sens. Actuators, B 2003, 91 (1–3), 266–274. 10.1016/S0925-4005(03)00113-8. DOI
Chinowsky T. M.; Soelberg S. D.; Baker P.; Swanson N. R.; Kauffman P.; Mactutis A.; Grow M. S.; Atmar R.; Yee S. S.; Furlong C. E. Portable 24-Analyte Surface Plasmon Resonance Instruments for Rapid, Versatile Biodetection. Biosens. Bioelectron. 2007, 22 (9–10), 2268–2275. 10.1016/j.bios.2006.11.026. PubMed DOI
Naimushin A. N.; Soelberg S. D.; Bartholomew D. U.; Elkind J. L.; Furlong C. E. A Portable Surface Plasmon Resonance (SPR) Sensor System with Temperature Regulation. Sens. Actuators, B 2003, 96 (1–2), 253–260. 10.1016/S0925-4005(03)00533-1. DOI
Feltis B. N.; Sexton B. A.; Glenn F. L.; Best M. J.; Wilkins M.; Davis T. J. A Hand-Held Surface Plasmon Resonance Biosensor for the Detection of Ricin and Other Biological Agents. Biosens. Bioelectron. 2008, 23 (7), 1131–1136. 10.1016/j.bios.2007.11.005. PubMed DOI
Nanoplasmonic Sensors; Dmitriev A., Ed.; Springer: New York, 2012.
Sepúlveda B.; Angelomé P. C.; Lechuga L. M.; Liz-Marzán L. M. LSPR-Based Nanobiosensors. Nano Today 2009, 4 (3), 244–251. 10.1016/j.nantod.2009.04.001. DOI
Ruemmele J. A.; Hall W. P.; Ruvuna L. K.; Van Duyne R. P. A Localized Surface Plasmon Resonance Imaging Instrument for Multiplexed Biosensing. Anal. Chem. 2013, 85 (9), 4560–4566. 10.1021/ac400192f. PubMed DOI PMC
Raphael M. P.; Christodoulides J. A.; Delehanty J. B.; Long J. P.; Pehrsson P. E.; Byers J. M. Quantitative LSPR Imaging for Biosensing with Single Nanostructure Resolution. Biophys. J. 2013, 104 (1), 30–36. 10.1016/j.bpj.2012.11.3821. PubMed DOI PMC
Liu J.; He H.; Xiao D.; Yin S.; Ji W.; Jiang S.; Luo D.; Wang B.; Liu Y. Recent Advances of Plasmonic Nanoparticles and Their Applications. Materials 2018, 11 (10), 1833.10.3390/ma11101833. PubMed DOI PMC
Lopez G. A.; Estevez M.-C.; Soler M.; Lechuga L. M. Recent Advances in Nanoplasmonic Biosensors: Applications and Lab-on-a-Chip Integration. Nanophotonics 2017, 6 (1), 123–136. 10.1515/nanoph-2016-0101. DOI
Jiang J.; Wang X.; Li S.; Ding F.; Li N.; Meng S.; Li R.; Qi J.; Liu Q.; Liu G. L. Plasmonic Nano-Arrays for Ultrasensitive Bio-Sensing. Nanophotonics 2018, 7 (9), 1517–1531. 10.1515/nanoph-2018-0023. DOI
Tu M. H.; Sun T.; Grattan K. T. V. LSPR Optical Fibre Sensors Based on Hollow Gold Nanostructures. Sens. Actuators, B 2014, 191, 37–44. 10.1016/j.snb.2013.09.094. DOI
Svedendahl M.; Chen S.; Dmitriev A.; Käll M. Refractometric Sensing Using Propagating versus Localized Surface Plasmons: A Direct Comparison. Nano Lett. 2009, 9 (12), 4428–4433. 10.1021/nl902721z. PubMed DOI
Kabashin A. V.; Evans P.; Pastkovsky S.; Hendren W.; Wurtz G. A.; Atkinson R.; Pollard R.; Podolskiy V. A.; Zayats A. V. Plasmonic Nanorod Metamaterials for Biosensing. Nat. Mater. 2009, 8 (11), 867–871. 10.1038/nmat2546. PubMed DOI
Xu H.; Käll M. Modeling the Optical Response of Nanoparticle-Based Surface Plasmon Resonance Sensors. Sens. Actuators, B 2002, 87 (2), 244–249. 10.1016/S0925-4005(02)00243-5. DOI
Chen H.; Kou X.; Yang Z.; Ni W.; Wang J. Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles. Langmuir 2008, 24 (10), 5233–5237. 10.1021/la800305j. PubMed DOI
Saison-Francioso O.; Lévêque G.; Boukherroub R.; Szunerits S.; Akjouj A. Dependence between the Refractive-Index Sensitivity of Metallic Nanoparticles and the Spectral Position of Their Localized Surface Plasmon Band: A Numerical and Analytical Study. J. Phys. Chem. C 2015, 119 (51), 28551–28559. 10.1021/acs.jpcc.5b08357. DOI
Martinsson E.; Sepulveda B.; Chen P.; Elfwing A.; Liedberg B.; Aili D. Optimizing the Refractive Index Sensitivity of Plasmonically Coupled Gold Nanoparticles. Plasmonics 2014, 9 (4), 773–780. 10.1007/s11468-013-9659-y. DOI
Hooshmand N.; Bordley J. A.; El-Sayed M. A. The Sensitivity of the Distance Dependent Plasmonic Coupling between Two Nanocubes to Their Orientation: Edge-to-Edge versus Face-to-Face. J. Phys. Chem. C 2016, 120 (8), 4564–4570. 10.1021/acs.jpcc.6b01102. DOI
Chen Y. Nanofabrication by Electron Beam Lithography and Its Applications: A Review. Microelectron. Eng. 2015, 135, 57–72. 10.1016/j.mee.2015.02.042. DOI
Zhu S.; Zhou W. Plasmonic Properties of Two-Dimensional Metallic Nanoholes Fabricated by Focused Ion Beam Lithography. J. Nanopart. Res. 2012, 14 (3), 652.10.1007/s11051-011-0652-0. DOI
Kaye S.; Zeng Z.; Sanders M.; Chittur K.; Koelle P. M.; Lindquist R.; Manne U.; Lin Y.; Wei J. Label-Free Detection of DNA Hybridization with a Compact LSPR-Based Fiber-Optic Sensor. Analyst 2017, 142 (11), 1974–1981. 10.1039/C7AN00249A. PubMed DOI PMC
Yu C.-C.; Chen H.-L. Nanoimprint Technology for Patterning Functional Materials and Its Applications. Microelectron. Eng. 2015, 132, 98–119. 10.1016/j.mee.2014.10.015. DOI
Su H.; Cheng X. R.; Endo T.; Kerman K. Photonic Crystals on Copolymer Film for Label-Free Detection of DNA Hybridization. Biosens. Bioelectron. 2018, 103, 158–162. 10.1016/j.bios.2017.12.013. PubMed DOI
Krishnamoorthy S.; Krishnan S.; Thoniyot P.; Low H. Y. Inherently Reproducible Fabrication of Plasmonic Nanoparticle Arrays for SERS by Combining Nanoimprint and Copolymer Lithography. ACS Appl. Mater. Interfaces 2011, 3 (4), 1033–1040. 10.1021/am1011518. PubMed DOI
Dickreuter S.; Gleixner J.; Kolloch A.; Boneberg J.; Scheer E.; Leiderer P. Mapping of Plasmonic Resonances in Nanotriangles. Beilstein J. Nanotechnol. 2013, 4 (1), 588–602. 10.3762/bjnano.4.66. PubMed DOI PMC
Stakenborg T.; Lagae L. Gold Nanoring as a Sensitive Plasmonic Biosensor for On-Chip DNA Detection. Appl. Phys. Lett. 2012, 100 (17), 173114.10.1063/1.4707382. DOI
Qi X.; Bi J. Plasmonic Sensors Relying on Nanoparticle Arrays Created by a Template-Directed Dewetting Process. Opt. Commun. 2019, 453, 124328.10.1016/j.optcom.2019.124328. DOI
Nguyen D. T.; Kim D.-J.; Kim K.-S. Controlled Synthesis and Biomolecular Probe Application of Gold Nanoparticles. Micron 2011, 42 (3), 207–227. 10.1016/j.micron.2010.09.008. PubMed DOI
Cant N. E.; Critchley K.; Zhang H.-L.; Evans S. D. Surface Functionalisation for the Self-Assembly of Nanoparticle/Polymer Multilayer Films. Thin Solid Films 2003, 426 (1–2), 31–39. 10.1016/S0040-6090(02)01300-7. DOI
Magura J.; Zeleňáková A.; Zeleňák V.; Kaňuchová M. Thiol-Modified Gold Nanoparticles Deposited on Silica Support Using Dip Coating. Appl. Surf. Sci. 2014, 315 (1), 392–399. 10.1016/j.apsusc.2014.07.173. DOI
Schneider T.; Jahr N.; Jatschka J.; Csaki A.; Stranik O.; Fritzsche W. Localized Surface Plasmon Resonance (LSPR) Study of DNA Hybridization at Single Nanoparticle Transducers. J. Nanopart. Res. 2013, 15 (4), 1531.10.1007/s11051-013-1531-7. DOI
Thamm S.; Csàki A.; Fritzsche W. LSPR Detection of Nucleic Acids on Nanoparticle Monolayers. Methods Mol. Biol. 2018, 1811, 163–171. 10.1007/978-1-4939-8582-1_11. PubMed DOI
Bonyár A.; Csarnovics I.; Veres M.; Himics L.; Csik A.; Kámán J.; Balázs L.; Kökényesi S. Investigation of the Performance of Thermally Generated Gold Nanoislands for LSPR and SERS Applications. Sens. Actuators, B 2018, 255, 433–439. 10.1016/j.snb.2017.08.063. DOI
Roether J.; Chu K.-Y.; Willenbacher N.; Shen A. Q.; Bhalla N. Real-Time Monitoring of DNA Immobilization and Detection of DNA Polymerase Activity by a Microfluidic Nanoplasmonic Platform. Biosens. Bioelectron. 2019, 142, 111528.10.1016/j.bios.2019.111528. PubMed DOI
Bhalla N.; Sathish S.; Galvin C. J.; Campbell R. A.; Sinha A.; Shen A. Q. Plasma-Assisted Large-Scale Nanoassembly of Metal–Insulator Bioplasmonic Mushrooms. ACS Appl. Mater. Interfaces 2018, 10 (1), 219–226. 10.1021/acsami.7b15396. PubMed DOI
Gartia M. R.; Hsiao A.; Pokhriyal A.; Seo S.; Kulsharova G.; Cunningham B. T.; Bond T. C.; Liu G. L. Colorimetric Plasmon Resonance Imaging Using Nano Lycurgus Cup Arrays. Adv. Opt. Mater. 2013, 1 (1), 68–76. 10.1002/adom.201200040. DOI
Zhu S.; Li H.; Yang M.; Pang S. W. Label-Free Detection of Live Cancer Cells and DNA Hybridization Using 3D Multilayered Plasmonic Biosensor. Nanotechnology 2018, 29 (36), 365503.10.1088/1361-6528/aac8fb. PubMed DOI
Ozaki Y.; Kneipp K.; Aroca R.. Frontiers of Surface-Enhanced Raman Scattering; Ozaki Y., Kneipp K., Aroca R., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; Vol. 9781118359.
Israelsen N. D.; Hanson C.; Vargis E. Nanoparticle Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction. Sci. World J. 2015, 2015, 1–12. 10.1155/2015/124582. PubMed DOI PMC
Jin H. M.; Kim J. Y.; Heo M.; Jeong S.-J.; Kim B. H.; Cha S. K.; Han K. H.; Kim J. H.; Yang G. G.; Shin J.; Kim S. O. Ultralarge Area Sub-10 Nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS. ACS Appl. Mater. Interfaces 2018, 10 (51), 44660–44667. 10.1021/acsami.8b17325. PubMed DOI
Badilescu S.; Prakash J.; Packirisamy M.. Surface Gold and Silver-Polymer Nanocomposite Self-Standing Films. In Handbook of Polymer and Ceramic Nanotechnology; Springer International Publishing: Cham, 2019; pp 1–20.
SadAbadi H.; Badilescu S.; Packirisamy M.; Wüthrich R. Integration of Gold Nanoparticles in PDMS Microfluidics for Lab-on-a-Chip Plasmonic Biosensing of Growth Hormones. Biosens. Bioelectron. 2013, 44 (1), 77–84. 10.1016/j.bios.2013.01.016. PubMed DOI
Scarano S.; Berlangieri C.; Carretti E.; Dei L.; Minunni M. Tunable Growth of Gold Nanostructures at a PDMS Surface to Obtain Plasmon Rulers with Enhanced Optical Features. Microchim. Acta 2017, 184 (9), 3093–3102. 10.1007/s00604-017-2323-z. DOI
Spiga F. M.; Bonyár A.; Ring B.; Onofri M.; Vinelli A.; Sántha H.; Guiducci C.; Zuccheri G. Hybridization Chain Reaction Performed on a Metal Surface as a Means of Signal Amplification in SPR and Electrochemical Biosensors. Biosens. Bioelectron. 2014, 54, 102–108. 10.1016/j.bios.2013.10.036. PubMed DOI
Guy R. A.; Xiao C.; Horgen P. A. Real-Time PCR Assay for Detection and Genotype Differentiation of Giardia Lamblia in Stool Specimens. J. Clin. Microbiol. 2004, 42 (7), 3317–3320. 10.1128/JCM.42.7.3317-3320.2004. PubMed DOI PMC
Fan X.; Hao Q.; Jin R.; Huang H.; Luo Z.; Yang X.; Chen Y.; Han X.; Sun M.; Jing Q.; Dong Z.; Qiu T. Assembly of Gold Nanoparticles into Aluminum Nanobowl Array. Sci. Rep. 2017, 7 (1), 2322.10.1038/s41598-017-02552-z. PubMed DOI PMC
Bonyár A.; Lednický T.; Hubálek J. LSPR Nanosensors with Highly Ordered Gold Nanoparticles Fabricated on Nanodimpled Aluminium Templates. Procedia Eng. 2016, 168, 1160–1163. 10.1016/j.proeng.2016.11.390. DOI
Ikeda H.; Iwai M.; Nakajima D.; Kikuchi T.; Natsui S.; Sakaguchi N.; Suzuki R. O. Nanostructural Characterization of Ordered Gold Particle Arrays Fabricated via Aluminum Anodizing, Sputter Coating, and Dewetting. Appl. Surf. Sci. 2019, 465, 747–753. 10.1016/j.apsusc.2018.09.229. DOI
Lee W.; Park S.-J. Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures. Chem. Rev. 2014, 114 (15), 7487–7556. 10.1021/cr500002z. PubMed DOI
Yang S.; Xu F.; Ostendorp S.; Wilde G.; Zhao H.; Lei Y. Template-Confined Dewetting Process to Surface Nanopatterns: Fabrication, Structural Tunability, and Structure-Related Properties. Adv. Funct. Mater. 2011, 21 (13), 2446–2455. 10.1002/adfm.201002387. DOI
Müller C. M.; Mornaghini F. C. F.; Spolenak R. Ordered Arrays of Faceted Gold Nanoparticles Obtained by Dewetting and Nanosphere Lithography. Nanotechnology 2008, 19 (48), 485306.10.1088/0957-4484/19/48/485306. PubMed DOI
Hao Q.; Huang H.; Fan X.; Yin Y.; Wang J.; Li W.; Qiu T.; Ma L.; Chu P. K.; Schmidt O. G. Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask. ACS Appl. Mater. Interfaces 2017, 9 (41), 36199–36205. 10.1021/acsami.7b11428. PubMed DOI
Kang M.; Park S.-G.; Jeong K.-H. Repeated Solid-State Dewetting of Thin Gold Films for Nanogap-Rich Plasmonic Nanoislands. Sci. Rep. 2015, 5 (1), 14790.10.1038/srep14790. PubMed DOI PMC
Bae Y. M.; Jin S. O.; Kim I.; Shin K. Y.; Heo D.; Kang D.-G. Detection of Biomarkers Using LSPR Substrate with Gold Nanoparticle Array. J. Nanomater. 2015, 2015, 1–6. 10.1155/2015/302816. DOI
Kravets V. G.; Kabashin A. V.; Barnes W. L.; Grigorenko A. N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118 (12), 5912–5951. 10.1021/acs.chemrev.8b00243. PubMed DOI PMC
Fischer L. M.; Tenje M.; Heiskanen A. R.; Masuda N.; Castillo J.; Bentien A.; Émneus J.; Jakobsen M. H.; Boisen A. Gold Cleaning Methods for Electrochemical Detection Applications. Microelectron. Eng. 2009, 86 (4–6), 1282–1285. 10.1016/j.mee.2008.11.045. DOI
Hsieh C. C.; Balducci A.; Doyle P. S. Ionic Effects on the Equilibrium Dynamics of DNA Confined in Nanoslits. Nano Lett. 2008, 8 (6), 1683–1688. 10.1021/nl080605+. PubMed DOI
Gong P.; Levicky R. DNA Surface Hybridization Regimes. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (14), 5301–5306. 10.1073/pnas.0709416105. PubMed DOI PMC
Zhang X.; Servos M. R.; Liu J. Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles. Langmuir 2012, 28 (8), 3896–3902. 10.1021/la205036p. PubMed DOI
Jia S.; Bian C.; Sun J.; Tong J.; Xia S. A Wavelength-Modulated Localized Surface Plasmon Resonance (LSPR) Optical Fiber Sensor for Sensitive Detection of Mercury(II) Ion by Gold Nanoparticles-DNA Conjugates. Biosens. Bioelectron. 2018, 114, 15–21. 10.1016/j.bios.2018.05.004. PubMed DOI
Drozd M.; Pietrzak M. D.; Malinowska E. SPRi-Based Biosensing Platforms for Detection of Specific DNA Sequences Using Thiolate and Dithiocarbamate Assemblies. Front. Chem. 2018, 6, 173.10.3389/fchem.2018.00173. PubMed DOI PMC