Substituted N-(Pyrazin-2-yl)benzenesulfonamides; Synthesis, Anti-Infective Evaluation, Cytotoxicity, and In Silico Studies

. 2019 Dec 29 ; 25 (1) : . [epub] 20191229

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31905775

Grantová podpora
SVV 260 401 Ministry of Education, Youth and Sports of the Czech Republic
project C C3/1572317 Grant Agency of Charles University
No. CZ.02.1.01/0.0/0.0/16_019/0000841 EFSA-CDN
Structure-based design of new antitubercular medicines - KU Leuven (Arthur Van Aerschot) - Charles University in Prague (Martin Doležal). CELSA

We prepared a series of substituted N-(pyrazin-2-yl)benzenesulfonamides as an attempt to investigate the effect of different linkers connecting pyrazine to benzene cores on antimicrobial activity when compared to our previous compounds of amide or retro-amide linker type. Only two compounds, 4-amino-N-(pyrazin-2-yl)benzenesulfonamide (MIC = 6.25 μg/mL, 25 μM) and 4-amino-N-(6-chloropyrazin-2-yl)benzenesulfonamide (MIC = 6.25 μg/mL, 22 μM) exerted good antitubercular activity against M. tuberculosis H37Rv. However, they were excluded from the comparison as they-unlike the other compounds-possessed the pharmacophore for the inhibition of folate pathway, which was proven by docking studies. We performed target fishing, where we identified matrix metalloproteinase-8 as a promising target for our title compounds that is worth future exploration.

Zobrazit více v PubMed

World Health Organization Global Tuberculosis Report 2018. [(accessed on 20 June 2019)]; WHO/CDC/TB/2018.20. Available online: http://www.who.int/tb/publications/global_report/en/

Zitko J., Servusová B., Paterová P., Mandíková J., Kubíček V., Kučera R., Hrabcová V., Kuneš J., Soukup O., Doležal M. Synthesis, antimycobacterial activity and in vitro cytotoxicity of 5-chloro-N-phenylpyrazine-2-carboxamides. Molecules. 2013;18:14807–14825. doi: 10.3390/molecules181214807. PubMed DOI PMC

Zitko J., Barbora S.V., Paterová P., Navrátilová L., Trejtnar F., Kuneš J., Doležal M. Design, synthesis and anti-mycobacterial evaluation of some new N-phenylpyrazine-2-carboxamides. Chem. Pap. 2016;70:649–657. doi: 10.1515/chempap-2015-0246. DOI

Zitko J., Mindlová A., Valášek O., Jand’ourek O., Paterová P., Janoušek J., Konečná K., Doležal M. Design, Synthesis and Evaluation of N-pyrazinylbenzamides as Potential Antimycobacterial Agents. Molecules. 2018;23:2390. doi: 10.3390/molecules23092390. PubMed DOI PMC

Alafeefy A., Alqasoumi S., Ashour A., Alshebly M. Quinazoline-sulfonamides as potential antitumor agents: Synthesis and biological testing. J. Enzym. Inhib. Med. Chem. 2013;28:375–383. doi: 10.3109/14756366.2012.668541. PubMed DOI

Singh P., Kumar R. Novel inhibitors of cyclooxygenase-2: The sulfones and sulfonamides of 1,2-diaryl-4,5-difluorobenzene. Analysis of quantitative structure-activity relationship. J. Enzym. Inhib. 1998;13:409–417. doi: 10.3109/14756369809020546. PubMed DOI

Focken T., Burford K., Grimwood M.E., Zenova A., Andrez J.-C., Gong W., Wilson M., Taron M., Decker S., Lofstrand V., et al. Identification of CNS-Penetrant Aryl Sulfonamides as Isoform-Selective NaV1.6 Inhibitors with Efficacy in Mouse Models of Epilepsy. J. Med. Chem. 2019;62:9618–9641. doi: 10.1021/acs.jmedchem.9b01032. PubMed DOI

Chohan Z., Shad H. Metal-based new sulfonamides: Design, synthesis, antibacterial, antifungal, and cytotoxic properties. J. Enzym. Inhib. Med. Chem. 2012;27:403–412. doi: 10.3109/14756366.2011.593515. PubMed DOI

Doležal M., Zitko J. Pyrazine derivatives: A patent review (June 2012—present) Expert Opin. Ther. Pat. 2015;25:33–47. doi: 10.1517/13543776.2014.982533. PubMed DOI

Shepard D., Dreicer R. Zibotentan for the treatment of castrate-resistant prostate cancer. Expert Opin. Investig. Drugs. 2010;19:899–908. doi: 10.1517/13543784.2010.491822. PubMed DOI

Baxter A., Johnson T., Kindon N., Roberts B., Stocks M. N-Pyrazinyl-Phenyl-Phenylsulphonamides and Their Use in the Treatment of Chemokine Mediated Diseases. 2003/059893. WO Patent. 2003 Jul 24;

Aleksa V., Prozorova V. Pharmacokinetics and the clinical use of sulfalene. Sov. Meditsina. 1985;10:106–108. PubMed

Forgacs P., Wengenack N., Hall L., Zimmerman S., Silverman M., Roberts G. Tuberculosis and Trimethoprim-Sulfamethoxazole. Antimicrob. Agents Chemother. 2009;53:4789–4793. doi: 10.1128/AAC.01658-08. PubMed DOI PMC

Palomino J., Martin A. The potential role of trimethoprim-sulfamethoxazole in the treatment of drug-resistant tuberculosis. Future Microbiol. 2016;11:539–547. doi: 10.2217/fmb.16.2. PubMed DOI

Burchall J. Mechanism of action of trimethoprim-sulfamethoxazole. II. J. Infect. Dis. 1973;128(Suppl. S3):S437–S441. doi: 10.1093/infdis/128.Supplement_3.S437. PubMed DOI

Hitchings G. Mechanism of action of trimethoprim-sulfamethoxazole. I. J. Infect. Dis. 1973;128(Suppl. S3):S433–S436. doi: 10.1093/infdis/128.Supplement_3.S433. PubMed DOI

Alderwick L., Harrison J., Lloyd G., Birch H. The Mycobacterial Cell Wall--Peptidoglycan and Arabinogalactan. Cold Spring Harb. Perspect. Med. 2015;5:a021113. doi: 10.1101/cshperspect.a021113. PubMed DOI PMC

Doležal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC

Servusova-Vanaskova B., Paterová P., Garaj V., Mandíková J., Kunes J., Naesens L., Jílek P., Doležal M., Zitko J. Synthesis and Antimicrobial Evaluation of 6-Alkylamino-N-phenylpyrazine-2-carboxamides. Chem. Boil. Drug Des. 2015;86:674–681. doi: 10.1111/cbdd.12536. PubMed DOI

Tostmann A., Boeree M.J., Peters W.H., Roelofs H.M., Aarnoutse R.E., Van Der Ven A.J., Dekhuijzen P.R. Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity. Int. J. Antimicrob. Agents. 2008;31:577–580. doi: 10.1016/j.ijantimicag.2008.01.022. PubMed DOI

Molecular Operating Environment (MOE) Chemical Computing Group ULC; Montreal, QC, Canada: 2019. 2019.01.

Bell P.H., Richard O.R., Jr. Studies in Chemotherapy. VII. A Theory of the Relation of Structure to Activity of Sulfanilamide Type Compounds1. J. Am. Chem. Soc. 1942;64:2905–2917. doi: 10.1021/ja01264a055. DOI

Bamford M., Dean D., Naylor A., Takle A., Wilson D. Nitrogen-Containing Heterocyclic Compounds as Inhibitors of B-Raf Kinase. 7297693b2. U.S. Patent. 2007 Nov 20;

Bengtsson M., Larsson J., Nikitidis G., Storm P., Bailey J.P., Griffen E.J., Arnould J.-C., Bird T.G.C. Preparation of 5-Heteroaryl Thiazoles and Their Use as Phosphoinositide 3-Kinase (PI3K) Inhibitors. 2006051270A1. WO Patent. 2006 May 18;

Dea-Ayuela M.A., Castillo E., González-Álvarez M., Vega C., Rolon M., Bolás-Fernández F., Borras J., González-Rosende M.E. In vivo and in vitro anti-leishmanial activities of 4-nitro-N-pyrimidin- and N-pyrazin-2-ylbenzenesulfonamides, and N2-(4-nitrophenyl)-N1-propylglycinamide. Bioorganic Med. Chem. 2009;17:7449–7456. doi: 10.1016/j.bmc.2009.09.030. PubMed DOI

Coatney G.R., Cooper W.C., Young M.D., Burgess R.W., Smarr R.G. Studies in human malaria: II. the suppressive action of sulfadiazine and sulfapyrazine against sporozoite-induced vivax malaria (St. Elizabeth strain) Am. J. Hyg. 1947;46:105–118. PubMed

Coatney G.R., Cooper W.C., Young M.D., Mclendon S.B. Studies in Human Malaria: I. The Protective Action of Sulfadiazine and Sulfapyrazine against Sporozoite—Induced Falciparum Malaria. Am. J. Hyg. 1947;46:84–104. PubMed

Kuenzel W., Kirby J. Method for the Stimulation of Sperm Production and Gonadal Development in Animals. 1999038376A1. WO Patent. 1999 Aug 5;

Modir S., Mansouri B., Kiaeis S. The effect of sulfaclozine 30% (Esb3) on experimental coccidiosis in broiler cockerels. Iran. J. Vet. Res. 2009;5:62–69.

Sinha S. Sulfonamide derivatives as Mycobacterium tuberculosis inhibitors: In silico approach. In Silico Pharmacol. 2018;6:4. PubMed PMC

Ayers K. Master’s Thesis. University of Tennessee Health Science Center; Memphis, TN, USA: 2009. Structural and Kinetics Studies of the Enzyme Dihydropteroate Synthase and the Implications for Antibiotic Resistance. Theses and Dissertations (ETD). Paper 333. DOI

Nopponpunth V., Sirawaraporn W., Greene P., Santi D. Cloning and expression of Mycobacterium tuberculosis and Mycobacterium leprae dihydropteroate synthase in Escherichia coli. J. Bacteriol. 1999;181:6814–6821. PubMed PMC

Yun M.-K., Wu Y., Li Z., Zhao Y., Waddell M.B., Ferreira A.M., Lee R.E., Bashford N., White S.W. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase. Science. 2012;335:1110–1114. doi: 10.1126/science.1214641. PubMed DOI PMC

Hammoudeh D., Zhao Y., White S., Lee R. Replacing sulfa drugs with novel DHPS inhibitors. Future Med. Chem. 2013;5:1331–1340. doi: 10.4155/fmc.13.97. PubMed DOI PMC

Chotpatiwetchkul W., Boonyarattanakalin K., Gleeson D., Gleeson M. Exploring the catalytic mechanism of dihydropteroate synthase: Elucidating the differences between the substrate and inhibitor. Org. Biomol. Chem. 2017;15:5593–5601. doi: 10.1039/C7OB01272A. PubMed DOI

Anand N. In: Mechanism of Action of Antimicrobial and Antitumor Agents. Corcoran J.W., Hahn F., Snell J., Arora K., editors. Springer; Berlin/Heidelberg, Germany: 1975. pp. 668–698.

Akopian T., Kandror O., Tsu C., Lai J.H., Wu W., Liu Y., Zhao P., Park A., Wolf L., Dick L.R., et al. Cleavage Specificity of Mycobacterium tuberculosis ClpP1P2 Protease and Identification of Novel Peptide Substrates and Boronate Inhibitors with Anti-bacterial Activity. J. Boil. Chem. 2015;290:11008–11020. doi: 10.1074/jbc.M114.625640. PubMed DOI PMC

Draper P. The aliphatic acylamide amidohydrolase of Mycobacterium smegmatis: Its inducible nature and relation to acyl-transfer to hydroxylamine. J. Gen. Microbiol. 1967;46:111–123. doi: 10.1099/00221287-46-1-111. PubMed DOI

Hamburger M., Jr., Ruegsegger J., Brookens N., Eakin E. The Absorption, Excretion, and Distribution of 2-Sulfanilamidopyrazine(Sulfapyrazine)in Man. Am. J. Med Sci. 1942;204:186–193. doi: 10.1097/00000441-194208000-00003. DOI

Liu C., Wang S., Zhang Q., Shao Y. Influence of three coccidiostats on the pharmacokinetics of florfenicol in rabbits. Exp. Anim. 2015;64:73–79. doi: 10.1538/expanim.14-0064. PubMed DOI PMC

Alterio V., Di Fiore A., D’Ambrosio K., Supuran C., De Simone G. Multiple Binding Modes of Inhibitors to Carbonic Anhydrases: How to Design Specific Drugs Targeting 15 Different Isoforms? Chem. Rev. 2012;112:4421–4468. doi: 10.1021/cr200176r. PubMed DOI

EUCAST DISCUSSION DOCUMENT E.Dis 5.1. Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Broth Dilution. Clin. Microbiol. Infect. 2003;9:1–7. doi: 10.1046/j.1469-0691.2003.00790.x. PubMed DOI

Tauro M., Laghezza A., Loiodice F., Piemontese L., CaraDonna A., Capelli D., Montanari R., Pochetti G., Di Pizio A., Agamennone M., et al. Catechol-based matrix metalloproteinase inhibitors with additional antioxidative activity. J. Enzym. Inhib. Med. Chem. 2016;31:25–37. doi: 10.1080/14756366.2016.1217853. PubMed DOI

Ogryzek M., Chylewska A., Turecka K., Lesiak D., Królicka A., Banasiuk R., Nidzworski D., Makowski M. Coordination chemistry of pyrazine derivatives analogues of PZA: Design, synthesis, characterization and biological activity. RSC Adv. 2016;6:52009–52025. doi: 10.1039/C6RA03068H. DOI

Pedersen K.S., Perlepe P., Aubrey M.L., Woodruff D.N., Reyes-Lillo S.E., Reinholdt A., Voigt L., Li Z., Borup K., Rouzières M., et al. Formation of the layered conductive magnet CrCl2(pyrazine)(2) through redox-active coordination chemistry. Nat. Chem. 2018;10:1056–1061. doi: 10.1038/s41557-018-0107-7. PubMed DOI

McDonald R. Pyrazine Chemistry. I. Derivatives of 3-Aminopyrazinoic Acid. J. Am. Chem. Soc. 1945;67:1711–1713.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...