Design, Synthesis and Evaluation of N-pyrazinylbenzamides as Potential Antimycobacterial Agents

. 2018 Sep 18 ; 23 (9) : . [epub] 20180918

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30231544

Grantová podpora
17-27514Y Akademie Věd České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000841 Ministerstvo Školství, Mládeže a Tělovýchovy

Three series of N-(pyrazin-2-yl)benzamides were designed as retro-amide analogues of previously published N-phenylpyrazine-2-carboxamides with in vitro antimycobacterial activity. The synthesized retro-amides were evaluated for in vitro growth inhibiting activity against Mycobacterium tuberculosis H37Rv (Mtb), three non-tuberculous mycobacterial strains (M. avium, M. kansasii, M. smegmatis) and selected bacterial and fungal strains of clinical importance. Regarding activity against Mtb, most N-pyrazinylbenzamides (retro-amides) possessed lower or no activity compared to the corresponding N-phenylpyrazine-2-carboxamides with the same substitution pattern. However, the active retro-amides tended to have lower HepG2 cytotoxicity and better selectivity. Derivatives with 5-chloro substitution on the pyrazine ring were generally more active compared to their 6-cloro positional isomers or non-chlorinated analogues. The best antimycobacterial activity against Mtb was found in N-(5-chloropyrazin-2-yl)benzamides with short alkyl (2h: R² = Me; 2i: R² = Et) in position 4 of the benzene ring (MIC = 6.25 and 3.13 µg/mL, respectively, with SI > 10). N-(5-Chloropyrazin-2-ylbenzamides with hydroxy substitution (2b: R² = 2-OH; 2d: R² = 4-OH) on the benzene ring or their acetylated synthetic precursors possessed the broadest spectrum of activity, being active in all three groups of mycobacterial, bacterial and fungal strains. The substantial differences in in silico calculated properties (hydrogen-bond pattern analysis, molecular electrostatic potential, HOMO and LUMO) can justify the differences in biological activities between N-pyrazinylbenzamides and N-phenylpyrazine-2-carboxamides.

Zobrazit více v PubMed

World Health Organization . Global Tuberculosis Report 2017. WHO; Geneva, Switzerland: 2017. [(accessed on 10 July 2018)]. WHO/HTM/TB/2017.23. Available online: http://www.who.int/tb/publications/global_report/en/

Houben R.M., Dodd P.J. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med. 2016;13:e1002152. doi: 10.1371/journal.pmed.1002152. PubMed DOI PMC

World Health Organization WHO Treatment Guidelines for Drug-Resistant Tuberculosis (2016 Update) [(accessed on 15 August 2018)]; WHO/HTM/TB/2016.04. Available online: http://www.who.int/tb/areas-of-work/drug-resistant-tb/treatment/resources/en/

Zimhony O., Cox J.S., Welch J.T., Vilcheze C., Jacobs W.R., Jr. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat. Med. 2000;6:1043–1047. doi: 10.1038/79558. PubMed DOI

Boshoff H.I., Mizrahi V., Barry C.E., 3rd Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J. Bacteriol. 2002;184:2167–2172. doi: 10.1128/JB.184.8.2167-2172.2002. PubMed DOI PMC

Ngo S.C., Zimhony O., Chung W.J., Sayahi H., Jacobs W.R., Jr., Welch J.T. Inhibition of isolated Mycobacterium tuberculosis fatty acid synthase I by pyrazinamide analogs. Antimicrob. Agents Chemother. 2007;51:2430–2435. doi: 10.1128/AAC.01458-06. PubMed DOI PMC

Zimhony O., Vilcheze C., Arai M., Welch J.T., Jacobs W.R., Jr. Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob. Agents Chemother. 2007;51:752–754. doi: 10.1128/AAC.01369-06. PubMed DOI PMC

Sayahi H., Zimhony O., Jacobs W.R., Jr., Shekhtman A., Welch J.T. Pyrazinamide, but not pyrazinoic acid, is a competitive inhibitor of NADPH binding to Mycobacterium tuberculosis fatty acid synthase I. Bioorg. Med. Chem. Lett. 2011;21:4804–4807. doi: 10.1016/j.bmcl.2011.06.055. PubMed DOI PMC

Zhang S., Chen J., Shi W., Liu W., Zhang W., Zhang Y. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2013;2:e34. doi: 10.1038/emi.2013.38. PubMed DOI PMC

Shi W., Chen J., Feng J., Cui P., Zhang S., Weng X., Zhang W., Zhang Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2014;3:e58. doi: 10.1038/emi.2014.61. PubMed DOI PMC

Pandey B., Grover S., Tyagi C., Goyal S., Jamal S., Singh A., Kaur J., Grover A. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis. Gene. 2016;581:31–42. doi: 10.1016/j.gene.2016.01.024. PubMed DOI

Kim H., Shibayama K., Rimbara E., Mori S. Biochemical characterization of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv and inhibition of its activity by pyrazinamide. PLoS ONE. 2014;9:e100062. doi: 10.1371/journal.pone.0100062. PubMed DOI PMC

Shi W., Zhang X., Jiang X., Yuan H., Lee J.S., Barry C.E., 3rd, Wang H., Zhang W., Zhang Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science. 2011;333:1630–1632. doi: 10.1126/science.1208813. PubMed DOI PMC

Yang J., Liu Y., Bi J., Cai Q., Liao X., Li W., Guo C., Zhang Q., Lin T., Zhao Y., et al. Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide. Mol. Microbiol. 2015;95:791–803. doi: 10.1111/mmi.12892. PubMed DOI

Dillon N.A., Peterson N.D., Feaga H.A., Keiler K.C., Baughn A.D. Anti-tubercular Activity of Pyrazinamide is Independent of trans-Translation and RpsA. Sci. Rep. 2017;7:6135. doi: 10.1038/s41598-017-06415-5. PubMed DOI PMC

Stehr M., Elamin A.A., Singh M. Pyrazinamide: The importance of uncovering the mechanisms of action in mycobacteria. Expert Rev. Anti-Infect. Ther. 2015;13:593–603. doi: 10.1586/14787210.2015.1021784. PubMed DOI

Dolezal M., Kesetovic D., Zitko J. Antimycobacterial evaluation of pyrazinoic acid reversible derivatives. Curr. Pharm. Des. 2011;17:3506–3514. doi: 10.2174/138161211798194477. PubMed DOI

Zitko J., Servusova B., Paterova P., Mandikova J., Kubicek V., Kucera R., Hrabcova V., Kunes J., Soukup O., Dolezal M. Synthesis, antimycobacterial activity and in vitro cytotoxicity of 5-chloro-N-phenylpyrazine-2-carboxamides. Molecules. 2013;18:14807–14825. doi: 10.3390/molecules181214807. PubMed DOI PMC

Zitko J., Servusova-Vanaskova B., Paterova P., Navratilova L., Trejtnar F., Kunes J., Dolezal M. Design, synthesis and anti-mycobacterial evaluation of some new N-phenylpyrazine-2-carboxamides. Chem. Pap. 2016;70:649–657. doi: 10.1515/chempap-2015-0246. DOI

Cai Z., Ding Z., Hao Y., Ni T., Xie F., Zhao J., Li R., Yu S., Wang T., Chai X., et al. Design, synthesis, and SAR study of 3-(benzo[d][1,3]dioxol-5-yl)-N-benzylpropanamide as novel potent synergists against fluconazole-resistant Candida albicans. Bioorg. Med. Chem. Lett. 2017;27:4571–4575. doi: 10.1016/j.bmcl.2017.08.053. PubMed DOI

Cabaret D., Adediran S.A., Pratt R.F., Wakselman M. New substrates for beta-lactam-recognizing enzymes: Aryl malonamates. Biochemistry. 2003;42:6719–6725. doi: 10.1021/bi0300478. PubMed DOI

Adediran S.A., Cabaret D., Lohier J.F., Wakselman M., Pratt R.F. Benzopyranones with retro-amide side chains as (inhibitory) beta-lactamase substrates. Bioorg. Med. Chem. Lett. 2004;14:5117–5120. doi: 10.1016/j.bmcl.2004.07.067. PubMed DOI

Adediran S.A., Lohier J.F., Cabaret D., Wakselman M., Pratt R.F. Synthesis and reactivity with beta-lactamases of a monobactam bearing a retro-amide side chain. Bioorg. Med. Chem. Lett. 2006;16:869–871. doi: 10.1016/j.bmcl.2005.11.006. PubMed DOI

Adediran S.A., Cabaret D., Lohier J.F., Wakselman M., Pratt R.F. Substituted aryl malonamates as new serine beta-lactamase substrates: Structure-activity studies. Bioorg. Med. Chem. 2010;18:282–291. doi: 10.1016/j.bmc.2009.10.056. PubMed DOI PMC

Theodorou V., Gogou M., Giannoussi A., Skobridis K. Insights into the N,N-diacylation reaction of 2-aminopyrimidines and deactivated anilines: An alternative N-monoacylation reaction. Arkivoc. 2014:11–23. doi: 10.3998/ark.5550190.p008.209. DOI

Collins L., Franzblau S.G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother. 1997;41:1004–1009. PubMed PMC

Bispo M.D.F., Goncalves R.S.B., Lima C.H.D., Cardoso L.N.D., Lourenco M.C.S., de Souza M.V.N. Synthesis and Antitubercular Evaluation of N-Arylpyrazine and N,N′-Alkyl-diylpyrazine-2-carboxamide Derivatives. J. Heterocycl. Chem. 2012;49:1317–1322. doi: 10.1002/jhet.921. DOI

Ananthan S., Faaleolea E.R., Goldman R.C., Hobrath J.V., Kwong C.D., Laughon B.E., Maddry J.A., Mehta A., Rasmussen L., Reynolds R.C., et al. High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. Tuberculosis. 2009;89:334–353. doi: 10.1016/j.tube.2009.05.008. PubMed DOI PMC

Zhang Y., Zhang H., Sun Z. Susceptibility of Mycobacterium tuberculosis to weak acids. J. Antimicrob. Chemother. 2003;52:56–60. doi: 10.1093/jac/dkg287. PubMed DOI

Wade M.M., Zhang Y. Effects of weak acids, UV and proton motive force inhibitors on pyrazinamide activity against Mycobacterium tuberculosis in vitro. J. Antimicrob. Chemother. 2006;58:936–941. doi: 10.1093/jac/dkl358. PubMed DOI

Dolezal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC

Dolezal M., Cmedlova P., Palek L., Vinsova J., Kunes J., Buchta V., Jampilek J., Kralova K. Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. Eur. J. Med. Chem. 2008;43:1105–1113. doi: 10.1016/j.ejmech.2007.07.013. PubMed DOI

Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15:8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC

Servusova-Vanaskova B., Paterova P., Garaj V., Mandikova J., Kunes J., Naesens L., Jilek P., Dolezal M., Zitko J. Synthesis and Antimicrobial Evaluation of 6-Alkylamino-N-phenylpyrazine-2-carboxamides. Chem. Biol. Drug Des. 2015;86:674–681. doi: 10.1111/cbdd.12536. PubMed DOI

Dolezal M., Miletin M., Kunes J., Kralova K. Substituted amides of pyrazine-2-carboxylic acids: Synthesis and biological activity. Molecules. 2002;7:363–373. doi: 10.3390/70300363. DOI

Sebastian S.H.R., Al-Alshaikh M.A., El-Emam A.A., Panicker C.Y., Zitko J., Dolezal M., VanAlsenoy C. Spectroscopic, quantum chemical studies, Fukui functions, in vitro antiviral activity and molecular docking of 5-chloro-N-(3-nitrophenyl) pyrazine-2-carboxamide. J. Mol. Struct. 2016;1119:188–199. doi: 10.1016/j.molstruc.2016.04.088. DOI

Bode B.M., Gordon M.S. Macmolplt: A graphical user interface for GAMESS. J. Mol. Graph. Model. 1998;16:133–138. doi: 10.1016/S1093-3263(99)00002-9. PubMed DOI

Matyk J., Waisser K., Drazkova K., Kunes J., Klimesova V., Palat K., Jr., Kaustova J. Heterocyclic isosters of antimycobacterial salicylanilides. Farmaco. 2005;60:399–408. doi: 10.1016/j.farmac.2005.02.002. PubMed DOI

Kratky M., Vinsova J. Salicylanilide Ester Prodrugs as Potential Antimicrobial Agents—A Review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI

Baranyai Z., Kratky M., Vinsova J., Szabo N., Senoner Z., Horvati K., Stolarikova J., David S., Bosze S. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates. Eur. J. Med. Chem. 2015;101:692–704. doi: 10.1016/j.ejmech.2015.07.001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...