Detailed Characteristics of Tonsillar Tumors with Extrachromosomal or Integrated Form of Human Papillomavirus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31905862
PubMed Central
PMC7019694
DOI
10.3390/v12010042
PII: v12010042
Knihovny.cz E-zdroje
- Klíčová slova
- E2 binding sites, genome status, human papillomavirus, methylation,
- MeSH
- DNA vazebné proteiny genetika MeSH
- genom virový * MeSH
- infekce papilomavirem virologie MeSH
- integrace viru * MeSH
- lidé MeSH
- lidský papilomavirus 16 genetika MeSH
- metylace DNA MeSH
- mutace MeSH
- onkogenní proteiny virové genetika MeSH
- tonzilární nádory virologie MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- E2 protein, Human papillomavirus type 16 MeSH Prohlížeč
- onkogenní proteiny virové MeSH
The human papillomavirus (HPV) integration, the critical step in viral carcinogenesis, most frequently occurs in the E2 gene, which results in its inactivation and in an increase of E6/E7 transcription. However, in a substantial number of tumors, the virus is present in an extrachromosomal form. For those tumors, the transformation mechanisms are not fully elucidated. Here we evaluated the possible mechanism of inactivating the E2 without interruption of the gene, methylation or mutation of the E2 binding sites (E2BSs) in HPV16-positive tonsillar tumors by next-generation and Sanger sequencing. Viral genome status was analyzed by the amplification of papillomavirus oncogene transcripts assay (APOT) and mRNA mapping, and expression of viral oncogenes was performed by qPCR. The methylation of E2BSs was significantly higher in tumors with an integrated, in comparison to extrachromosomal, form of the viral genome. No mutations were detected in the E2BSs. The viral oncogenes were equally expressed in samples with an integrated and extrachromosomal form of the virus. Only the nucleotide variants were identified in the E2 gene. No proposed mechanism of E2 inactivation was confirmed in tonsillar tumors with an extrachromosomal form of the HPV genome. The expression of E6/E7 genes seems to be sufficient to initiate and maintain the carcinogenic process.
Zobrazit více v PubMed
Gupta B., Johnson N.W., Kumar N. Global Epidemiology of Head and Neck Cancers: A Continuing Challenge. Oncology. 2016;91:13–23. doi: 10.1159/000446117. PubMed DOI
Gillison M.L., Chaturvedi A.K., Anderson W.F., Fakhry C. Epidemiology of Human Papillomavirus-Positive Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2015;33:3235–3242. doi: 10.1200/JCO.2015.61.6995. PubMed DOI PMC
Haeggblom L., Ramqvist T., Tommasino M., Dalianis T., Nasman A. Time to change perspectives on HPV in oropharyngeal cancer. A systematic review of HPV prevalence per oropharyngeal sub-site the last 3 years. Papillomavirus Res. 2017;4:1–11. doi: 10.1016/j.pvr.2017.05.002. PubMed DOI PMC
Chaturvedi A.K., Engels E.A., Pfeiffer R.M., Hernandez B.Y., Xiao W., Kim E., Jiang B., Goodman M.T., Sibug-Saber M., Cozen W., et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 2011;29:4294–4301. doi: 10.1200/JCO.2011.36.4596. PubMed DOI PMC
Stein A.P., Saha S., Kraninger J.L., Swick A.D., Yu M., Lambertg P.F., Kimple R. Prevalence of Human Papillomavirus in Oropharyngeal Cancer: A Systematic Review. Cancer J. 2015;21:138–146. doi: 10.1097/PPO.0000000000000115. PubMed DOI PMC
Dayyani F., Etzel C.J., Liu M., Ho C.H., Lippman S.M., Tsao A.S. Meta-analysis of the impact of human papillomavirus (HPV) on cancer risk and overall survival in head and neck squamous cell carcinomas (HNSCC) Head Neck Oncol. 2010;2:15. doi: 10.1186/1758-3284-2-15. PubMed DOI PMC
Moody C.A., Laimins L.A. Human papillomavirus oncoproteins: Pathways to transformation. Nat. Rev. Cancer. 2010;10:550–560. doi: 10.1038/nrc2886. PubMed DOI
McBride A.A., Warburton A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 2017;13:e1006211. doi: 10.1371/journal.ppat.1006211. PubMed DOI PMC
Doeberitz M., Vinokurova S. Host factors in HPV-related carcinogenesis: Cellular mechanisms controlling HPV infections. Arch. Med. Res. 2009;40:435–442. doi: 10.1016/j.arcmed.2009.06.002. PubMed DOI
Jeon S., Allen-Hoffmann B.L., Lambert P.F. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J. Virol. 1995;69:2989–2997. PubMed PMC
Parfenov M., Pedamallu C.S., Gehlenborg N., Freeman S.S., Danilova L., Bristow C.A., Lee S., Hadjipanayis A.G., Ivanova E.V., Wilkerson M.D. Characterization of HPV and host genome interactions in primary head and neck cancers. Proc. Natl. Acad. Sci. USA. 2014;111:15544–15549. doi: 10.1073/pnas.1416074111. PubMed DOI PMC
Vinokurova S., Wentzensen N., Kraus I., Klaes R., Driesch C., Melsheimer P., Kisseljov F., Dürst M., Schneider A., von Knebel Doeberitz M. Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res. 2008;68:307–313. doi: 10.1158/0008-5472.CAN-07-2754. PubMed DOI
Joo J., Shin H.J., Park B., Park S.Y., Yoo C.W., Yoon K.A., Kong S.Y., Kim Y.J., Kim S.S., Kim J.Y. Integration Pattern of Human Papillomavirus Is a Strong Prognostic Factor for Disease-Free Survival After Radiation Therapy in Cervical Cancer Patients. Int. J Radiat. Oncol. Biol. Phys. 2017;98:654–661. doi: 10.1016/j.ijrobp.2017.02.226. PubMed DOI
Hudelist G., Manavi M., Pischinger K.I., Watkins-Riedel T., Singer C.F., Kubista E., Czerwenka K.F. Physical state and expression of HPV DNA in benign and dysplastic cervical tissue: Different levels of viral integration are correlated with lesion grade. Gynecol. Oncol. 2004;92:873–880. doi: 10.1016/j.ygyno.2003.11.035. PubMed DOI
Shin H.J., Joo J., Yoon J.H., Yoo C.W., Kim J.Y. Physical status of human papillomavirus integration in cervical cancer is associated with treatment outcome of the patients treated with radiotherapy. PLoS ONE. 2014;9:e78995. doi: 10.1371/journal.pone.0078995. PubMed DOI PMC
Anayannis N.V., Schlecht N.F., Ben-Dayan M., Smith R.V., Belbin T.J., Ow T.J., Blakaj D.M., Burk R.D., Leonard S.M., Woodman C.B. Association of an intact E2 gene with higher HPV viral load, higher viral oncogene expression, and improved clinical outcome in HPV16 positive head and neck squamous cell carcinoma. PLoS ONE. 2018;13:e0191581. doi: 10.1371/journal.pone.0191581. PubMed DOI PMC
Nulton T.J., Kim N.K., DiNardo L.J., Morgan I.M., Windle B. Patients with integrated HPV16 in head and neck cancer show poor survival. Oral Oncol. 2018;80:52–55. doi: 10.1016/j.oraloncology.2018.03.015. PubMed DOI PMC
Vojtechova Z., Sabol I., Salakova M., Turek L., Grega M., Smahelova J., Vencalek O., Lukesova E., Klozar J., Tachezy R. Analysis of the integration of human papillomaviruses in head and neck tumours in relation to patients’ prognosis. Int. J. Cancer. 2016;138:386–395. doi: 10.1002/ijc.29712. PubMed DOI
Cheung J.L., Cheung T.H., Yu M.Y., Chan P.K. Virological characteristics of cervical cancers carrying pure episomal form of HPV16 genome. Gynecol. Oncol. 2013;131:374–379. doi: 10.1016/j.ygyno.2013.08.026. PubMed DOI
Faust H., Eldenhed Alwan E., Roslin A., Wennerberg J., Forslund O. Prevalence of human papillomavirus types, viral load and physical status of HPV16 in head and neck squamous cell carcinoma from the South Swedish Health Care Region. J. Gen. Virol. 2016;97:2949–2956. doi: 10.1099/jgv.0.000611. PubMed DOI
Schwarz E., Freese U.K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., Zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314:111–114. doi: 10.1038/314111a0. PubMed DOI
Smotkin D., Wettstein F.O. Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proc. Natl. Acad. Sci. USA. 1986;83:4680–4684. doi: 10.1073/pnas.83.13.4680. PubMed DOI PMC
Olthof N.C., Huebbers C.U., Kolligs J., Henfling M., Ramaekers F.C., Cornet I., van Lent-Albrechts J.A., Stegmann A.P., Silling S., Wieland U., et al. Viral load, gene expression and mapping of viral integration sites in HPV16-associated HNSCC cell lines. Int. J. Cancer. 2015;136:E207–E218. doi: 10.1002/ijc.29112. PubMed DOI PMC
Häfner N., Driesch C., Gajda M., Jansen L., Kirchmayr R., Runnebaum I.B., Dürst M. Integration of the HPV16 genome does not invariably result in high levels of viral oncogene transcripts. Oncogene. 2008;27:1610–1617. doi: 10.1038/sj.onc.1210791. PubMed DOI
Sun Z., Zhang R., Liu Z., Liu C., Li X., Zhou W., Yang L., Ruan Q., Zhang X. Development of a fluorescence-based multiplex genotyping method for simultaneous determination of human papillomavirus infections and viral loads. BMC Cancer. 2015;15:860. doi: 10.1186/s12885-015-1874-9. PubMed DOI PMC
Jung A.C., Briolat J., Millon R., De Reyniès A., Rickman D., Thomas E., Abecassis J., Clavel C., Wasylyk B. Biological and clinical relevance of transcriptionally active human papillomavirus (HPV) infection in oropharynx squamous cell carcinoma. Int. J. Cancer. 2010;126:1882–1894. doi: 10.1002/ijc.24911. PubMed DOI
Olthof N.C., Speel E.J.M., Kolligs J., Haesevoets A., Henfling M., Ramaekers F.C., Preuss S.F., Drebber U., Wieland U., Silling S., et al. Comprehensive analysis of HPV16 integration in OSCC reveals no significant impact of physical status on viral oncogene and virally disrupted human gene expression. PLoS ONE. 2014;9:e88718. doi: 10.1371/journal.pone.0088718. PubMed DOI PMC
Chaiwongkot A., Vinokurova S., Pientong C., Ekalaksananan T., Kongyingyoes B., Kleebkaow P., Chumworathayi B., Patarapadungkit N., Reuschenbach M., von Knebel Doeberitz M. Differential methylation of E2 binding sites in episomal and integrated HPV 16 genomes in preinvasive and invasive cervical lesions. Int. J. Cancer. 2013;132:2087–2094. doi: 10.1002/ijc.27906. PubMed DOI
Thain A., Jenkins O., Clarke A.R., Gaston K. CpG methylation directly inhibits binding of the human papillomavirus type 16 E2 protein to specific DNA sequences. J. Virol. 1996;70:7233–7235. PubMed PMC
Vinokurova S., von Knebel Doeberitz M. Differential methylation of the HPV 16 upstream regulatory region during epithelial differentiation and neoplastic transformation. PLoS ONE. 2011;6:e24451. doi: 10.1371/journal.pone.0024451. PubMed DOI PMC
Reuschenbach M., Huebbers C.U., Prigge E.S., Bermejo J.L., Kalteis M.S., Preuss S.F., Seuthe I.M., Kolligs J., Speel E.J.M., Olthof N., et al. Methylation status of HPV16 E2-binding sites classifies subtypes of HPV-associated oropharyngeal cancers. Cancer. 2015;121:1966–1976. doi: 10.1002/cncr.29315. PubMed DOI
Rotnáglová E., Tachezy R., Saláková M., Procházka B., Košlabová E., Veselá E., Ludvíková V., Hamšíková E., Klozar J. HPV involvement in tonsillar cancer: Prognostic significance and clinically relevant markers. Int. J. Cancer. 2011;129:101–110. doi: 10.1002/ijc.25889. PubMed DOI
Tachezy R., Smahelova J., Kaspirkova J., Salakova M. Human papillomavirus type-specific prevalence in the cervical cancer screening population of Czech women. PLoS ONE. 2013;8:e79156. doi: 10.1371/journal.pone.0079156. PubMed DOI PMC
Gravitt P.E., Peyton C., Wheeler C., Apple R., Higuchi R., Shah K.V. Reproducibility of HPV 16 and HPV 18 viral load quantitation using TaqMan real-time PCR assays. J. Virol. Methods. 2003;112:23–33. doi: 10.1016/S0166-0934(03)00186-1. PubMed DOI
Salakova M., Koslabova E., Vojtechova Z., Tachezy R., Sroller V. Detection of human polyomaviruses MCPyV, HPyV6, and HPyV7 in malignant and non-malignant tonsillar tissues. J. Med. Virol. 2016;88:695–702. doi: 10.1002/jmv.24385. PubMed DOI
Tachezy R., Mikyšková I., Ludvikova V., Rob L., Kučera T., Slavik V., Bekova A., Robova H., Pluta M., Hamšíková E. Longitudinal study of patients after surgical treatment for cervical lesions: Detection of HPV DNA and prevalence of HPV-specific antibodies. Eur. J. Clin. Microbiol. Infect. Dis. 2006;25:492–500. doi: 10.1007/s10096-006-0172-5. PubMed DOI
Xi L.F., Demers W., Kiviat N.B., Kuypers J., Beckmann A.M., Galloway D.A. Sequence variation in the noncoding region of human papillomavirus type 16 detected by single-strand conformation polymorphism analysis. J. Infect. Dis. 1993;168:610–617. doi: 10.1093/infdis/168.3.610. PubMed DOI
Collins S.I., Constandinou-Williams C., Wen K., Young L.S., Roberts S., Murray P.G., Woodman C.B. Disruption of the E2 gene is a common and early event in the natural history of cervical human papillomavirus infection: A longitudinal cohort study. Cancer Res. 2009;69:3828–3832. doi: 10.1158/0008-5472.CAN-08-3099. PubMed DOI
Lace M.J., Anson J.R., Klussmann J.P., Wang D.H., Smith E.M., Haugen T.H., Turek L.P. Human papillomavirus type 16 (HPV-16) genomes integrated in head and neck cancers and in HPV-16-immortalized human keratinocyte clones express chimeric virus-cell mRNAs similar to those found in cervical cancers. J. Virol. 2011;85:1645–1654. doi: 10.1128/JVI.02093-10. PubMed DOI PMC
Akagi K., Li J., Broutian T.R., Padilla-Nash H., Xiao W., Jiang B., Rocco J.W., Teknos T.N., Kumar B., Wangsa D., et al. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res. 2014;24:185–199. doi: 10.1101/gr.164806.113. PubMed DOI PMC
Park I.S., Chang X., Loyo M., Wu G., Chuang A., Kim M.S., Chae Y.K., Lyford-Pike S., Westra W.H., Saunders J.R., et al. Characterization of the methylation patterns in human papillomavirus type 16 viral DNA in head and neck cancers. Cancer Prev. Res. 2011;4:207–217. doi: 10.1158/1940-6207.CAPR-10-0147. PubMed DOI PMC
Hatano T., Sano D., Takahashi H., Hyakusoku H., Isono Y., Shimada S., Sawakuma K., Takada K., Oikawa R., Watanabe Y., et al. Identification of human papillomavirus (HPV) 16 DNA integration and the ensuing patterns of methylation in HPV-associated head and neck squamous cell carcinoma cell lines. Int. J. Cancer. 2017;140:1571–1580. doi: 10.1002/ijc.30589. PubMed DOI PMC
Lace M.J., Yamakawa Y., Ushikai M., Anson J.R., Haugen T.H., Turek L.P. Cellular factor YY1 downregulates the human papillomavirus 16 E6/E7 promoter, P97, in vivo and in vitro from a negative element overlapping the transcription-initiation site. J. Gen. Virol. 2009;90:2402–2412. doi: 10.1099/vir.0.012708-0. PubMed DOI
Schmidt M., Kedzia W., Gozdzicka-Jozefiak A. Intratype HPV16 sequence variation within LCR of isolates from asymptomatic carriers and cervical cancers. J. Clin. Virol. 2001;23:65–77. doi: 10.1016/S1386-6532(01)00189-5. PubMed DOI
Das P., Thomas A., Kannan S., Deodhar K., Shrivastava S.K., Mahantshetty U., Mulherkar R. Human papillomavirus (HPV) genome status & cervical cancer outcome--A retrospective study. Indian J. Med. Res. 2015;142:525–532. PubMed PMC
Deng Z., Hasegawa M., Kiyuna A., Matayoshi S., Uehara T., Agena S., Yamashita Y., Ogawa K., Maeda H., Suzuki M. Viral load, physical status, and E6/E7 mRNA expression of human papillomavirus in head and neck squamous cell carcinoma. Head Neck. 2013;35:800–808. doi: 10.1002/hed.23034. PubMed DOI
Nulton T.J., Olex A.L., Dozmorov M., Morgan I.M., Windle B. Analysis of The Cancer Genome Atlas sequencing data reveals novel properties of the human papillomavirus 16 genome in head and neck squamous cell carcinoma. Oncotarget. 2017;8:17684–17699. doi: 10.18632/oncotarget.15179. PubMed DOI PMC
Schmitt M., Dalstein V., Waterboer T., Clavel C., Gissmann L., Pawlita M. Diagnosing cervical cancer and high-grade precursors by HPV16 transcription patterns. Cancer Res. 2010;70:249–256. doi: 10.1158/0008-5472.CAN-09-2514. PubMed DOI