The Development of Generalized Motor Program in Constant and Variable Practice Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31920813
PubMed Central
PMC6927299
DOI
10.3389/fpsyg.2019.02760
Knihovny.cz E-zdroje
- Klíčová slova
- especial skill, generalized motor program, motor learning, practice conditions, specificity of practice, variability of practice,
- Publikační typ
- časopisecké články MeSH
The main objective of our study was to determine whether constant and variable practice conditions lead to the development of different memory representations (GMP) and as a result, they benefit performance of a skill differently. We compared one of the Generalized Motor Program (GMP) invariant features, i.e., relative timing, of the same variation of skill developed in constant and variable practice conditions. In two experiments, participants, naïve to the basketball, were practicing free throws, receiving the same amount of practice. In constant conditions they practiced at one distance only (4.57 m), whereas in variable conditions they practiced at seven (2.74, 3.35, 3.96, 4.57, 5.18, 5.79, and 6.4 m) and five (3.35, 3.96, 4.57, 5.18, and 5.79 m) distances, in Experiments 1 and 2, respectively. We found that relative timing of skills developed in constant and variable practice conditions is the same, confirming that these practice conditions form the same memory representation. However, we also observed that constant practice (CP) conditions resulted in overall shorter movement time as compared to the skill practiced in variable conditions. We hypothesized that it may be due to the facilitation of parameters assignment as it takes place in especial skill.
Department of Sport Didactics University School of Physical Education in Wrocław Wrocław Poland
Zobrazit více v PubMed
Bernstein N. A. (1967). The Coordination and Regulation of Movements. Oxford: Pergamon Press.
Breslin G., Hodges N. J., Kennedy R., Hanlon M., Williams A. M. (2010). An especial skill: support for a learned parameters hypothesis. Acta Psychol. 134 55–60. 10.1016/j.actpsy.2009.12.004 PubMed DOI
Breslin G., Hodges N. J., Steenson A., Williams A. M. (2012a). Constant or variable practice: recreating the especial skill effect. Acta Psychol. 140 154–157. 10.1016/j.actpsy.2012.04.002 PubMed DOI
Breslin G., Schmidt R. A., Lee T. D. (2012b). “Especial skills: generality and specificity in motor learning,” in Skill Acquisition in Sport: Research, Theory and Practice, 2nd Edn, eds Hodges N. J., Williams A. M., (New York, NY: Routledge; ), 337–349.
Button C., MacLeod M., Sanders R., Coleman S. (2003). Examining movement variability in the basketball free-throw action at different skill levels. Res. Q. Exerc. Sport 74 257–269. 10.1080/02701367.2003.10609090 PubMed DOI
Czyż S. H., Breslin G., Kwon O., Mazur M., Kobiałka K., Pizlo Z. (2013). Especial skill effect across age and performance level: the nature and degree of generalization. J. Mot. Behav. 45 139–152. 10.1080/00222895.2013.763763 PubMed DOI
Czyż S. H., Kwon O.-S., Marzec J., Styrkowiec P., Breslin G. (2015). Visual uncertainty influences the extent of an especial skill. Hum. Mov. Sci. 44 143–149. 10.1016/j.humov.2015.08.014 PubMed DOI
Czyż S. H., Zvonař M., Borysiuk Z., Nykodým J., Oleśniewicz P. (2019). Gaze behavior in basketball free throws developed in constant and variable practice. Int. J. Environ. Res. Public Health 16:E3875. 10.3390/ijerph16203875 PubMed DOI PMC
De Oliveira R. F., Huys R., Oudejans R. R. D., Van De Langenberg R., Beek P. J. (2007). Basketball jump shooting is controlled online by vision. Exp. Psychol. 54 180–186. 10.1027/1618-3169.54.3.180 PubMed DOI
Fitts P. M., Posner M. I. (1967). Human Performance. Belmont, CA: Brooks/Cole.
Gentile A. M. (1972). A working model of skill acquisition with application to teaching. Quest 17 3–23. 10.1080/00336297.1972.10519717 DOI
Gentile A. M. (2000). “Skill acquisition: action, movement, and neuromotor processes,” in Movement Science: Foundations for Physical Therapy, 2nd Edn, eds Carr J. H., Shepherd R. B., (Rockville, MD: Aspen; ), 111–187.
Hardy L., Parfitt G. (1991). A catastrophe model of anxiety and performance. Br. J. Psychol. 82 163–178. 10.1111/j.2044-8295.1991.tb02391.x PubMed DOI
Hunter S., Duchateau J., Enoka R. (2004). Muscle fatigue and the mechanisms of task failure. Exerc. Sport Sci. Rev. 32 44–49. 10.1097/00003677-200404000-00002 PubMed DOI
Keetch K. M., Schmidt R. A., Lee T. D., Young D. E. (2005). Especial skills: their emergence with massive amounts of practice. J. Exp. Psychol. Hum. Percept. Perform. 31 970–978. 10.1037/0096-1523.31.5.970 PubMed DOI
Lam W. K., Maxwell J. P., Masters R. S. W. (2009). Analogy versus explicit learning of a modified basketball shooting task: performance and kinematic outcomes. J. Sports Sci. 27 179–191. 10.1080/02640410802448764 PubMed DOI
Lee B.-C., Thrasher T. A., Layne C. S., Martin B. J. (2016). Vibrotactile cuing revisited to reveal a possible challenge to sensorimotor adaptation. Exp. Brain Res. 234 3523–3530. 10.1007/s00221-016-4750-1 PubMed DOI
Magill R. A., Anderson D. I. (2017). Motor Learning and Control: Concepts and Applications, 11th Edn New York, NY: McGraw-Hill Education.
Nabavinik M., Abaszadeh A., Mehranmanesh M., Rosenbaum D. A. (2018). Especial Skills in experienced archers. J. Mot. Behav. 50 249–253. 10.1080/00222895.2017.1327416 PubMed DOI
Savelsbergh G. J., van der Kamp J., Oudejans R. R., Scott M. A. (2004). “Perceptual learning is mastering perceptual degrees of freedom,” in Skill Acquisition in Sport: Research, Theory and Practice, eds Williams A. M., Hodges N. J., (New York, NY: Routledge; ), 374–389.
Savelsbergh G. J. P., Van Der Kamp J. (2000). Savelsbergh, geert JP, and john van der kamp. "information in learning to co-ordinate and control movements: is there a need for specificity of practice? Int. J. Sport Psychol. 31 467–484.
Schmidt R. A. (1975). A schema theory of discrete motor skill learning. Psychol. Rev. 82 225–260. 10.1037/h0076770 DOI
Schmidt R. A. (2003). Motor schema theory after 27 years: reflections and implications for a new theory. Res. Q. Exerc. Sport 74 366–375. 10.1080/02701367.2003.10609106 PubMed DOI
Schmidt R. A., Zelaznik H., Hawkins B., Frank J. S., Quinn J. T., Jr. (1979). Motor-output variability: a theory for the accuracy of rapid motor acts. Psychol. Rev. 86 415–451. 10.1037/0033-295X.86.5.415 PubMed DOI
Schmidt R. A., Zelaznik H. N., Frank J. S. (1978). “Sources of inaccuracy in rapid movement,” in Information Processing in Motor Control and Learning, ed. Stelmach G. E., (New York, NY: Academic Press; ), 183–203. 10.1016/B978-0-12-665960-3.50014-1 DOI
Schneider D. M., Schmidt R. A. (1995). Units of action in motor control: role of response complexity and target speed. Hum. Perform. 8 27–49. 10.1207/s15327043hup0801_3 DOI
Simons J. P., Wilson J. M., Wilson G. J., Theall S. (2009). Challenges to cognitive bases for an especial motor skill at the regulation baseball pitching distance. Res. Q. Exerc. Sport 80 469–479. 10.5641/027013609X13088500159246 PubMed DOI
Van Rossum J. H. A. (1990). Schmidt’s schema theory: the empirical base of the variability of practice hypothesis. Hum. Mov. Sci. 9 387–435. 10.1016/0167-9457(90)90010-B DOI
Winter D. (2009). Biomechanics and Motor Control of Human Movement 4th Edn New Jersey, NJ: John Wiley & Sons.
Zwaan R. A., Etz A., Lucas R. E., Donnellan M. B. (2018). Making replication mainstream. Behav. Brain Sci. 41:e120. 10.1017/S0140525X17001972. PubMed DOI