• This record comes from PubMed

The Impact of Soil-Applied Biochars From Different Vegetal Feedstocks on Durum Wheat Plant Performance and Rhizospheric Bacterial Microbiota in Low Metal-Contaminated Soil

. 2019 ; 10 () : 2694. [epub] 20191210

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Biochar shapes the soil environment and plant growth. Nevertheless, the mechanisms associated with an improved plant biomass and soil microbiome in low metal-contaminated soils are still unclear. In this study, the influence of biochar on soil physico-chemical properties, plant performance, and rhizosphere microbiota in durum wheat was investigated at the above- and belowground levels. Two kinds of biochar from different feedstocks (wood chips and wheat straw pellets) and two Italian durum wheat varieties, Duilio and Marco Aurelio, were analyzed in a greenhouse using a low-nutrient gleyic fluvisol containing a very small amount of Pb and Zn. Four different treatments were performed: soil-only control (C), soil amended with woody biochar equilibrated with nutrient solution (B1+) and non-activated (B1-), and soil amended with non-activated (B2-) wheat straw biochar. Seven weeks after seed germination, (1) the physico-chemical properties of soil, biochars, and mixtures were assessed; (2) the fresh and dry weight of aboveground plant tissues and roots and other morphometric traits were measured; and (3) metabarcoding of the 16S rRNA bacterial gene was performed on rhizosphere soil samples. The results showed that the biochar from wheat straw had stronger impact on both durum varieties, with higher electrical conductivity, higher levels of available K and Na, and a substantial increase of dissolved Na+, K+, and Cl- ions in pore water. Generally, biochar amendment decreased Zn availability for the plants. In addition, biochar improved plant growth in the early growth stage, and the more positive effect was achieved by combining wheat straw biochar with Marco Aurelio. Rhizosphere bacterial microbiota showed variation in alpha diversity only due to treatment; on the other hand, the differential analysis showed consistent variation among samples with significant effects on amplicon sequence variant (ASV) abundance due to the specific biochar treatment as well as the genotype. The pure B1-, due to its scarce nutrient content with respect to the richer types (B1+ and B2-), had a negative impact on microbiota richness. Our study highlights that an appropriate combination of biochar feedstock and crop species may lead to superior yield.

See more in PubMed

Agegnehu G., Bass A. M., Nelson P. N., Bird M. I. (2016). Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total. Environ. 543 295–306. 10.1016/j.scitotenv.2015.11.054 PubMed DOI

Aguilar-Chávez Á, Díaz-Rojas M., Cárdenas-Aquino M. D., Dendooven L., Luna-Guido M. (2012). Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal. Soil Biol. Biochem. 52 90–94. 10.1016/j.soilbio.2012.04.022 DOI

Albuquerque J. A., Salazar P., Barròn V., Torrent J., del Campillo M. C., Gallardo A., et al. (2013). Enhanced wheat yield by biochar addition under different mineralization levels. Agron. Sustain. Dev. 33 475–484. 10.1007/s13593-012-0128-3 DOI

Ameloot N., De Neve S., Jegajeevagan K., Yildiz G., Buchan D., Funkuin Y. N., et al. (2013). Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol. Biochem. 57 401–410. 10.1016/j.soilbio.2012.10.025 DOI

Atkinson C. J., Fitzgerald J. D., Hipps N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soil: a review. Plant Soil 337 1–18. 10.1007/s11104-010-0464-5 DOI

Bacci G., Ceccherini M. T., Bani A., Bazzicalupo M., Castaldini M., Galardini M., et al. (2015). Exploring the dynamics of bacterial community composition in soil: the pan-bacteriome approach. Antonie Van Leeuwenhoek 107 785–797. 10.1007/s10482-014-0372-4 PubMed DOI

Bacci G., Cerri M., Lastrucci L., Ferranti F., Ferri V., Foggi B., et al. (2018). Applying predictive models to decipher rhizobacterial modifications in common reed die-back affected populations. Sci. Total. Environ. 642 708–722. 10.1016/j.scitotenv.2018.06.066 PubMed DOI

Baronti S., Alberti G., Delle Vedove G., Di Gennaro F., Fellet G., Genesio L., et al. (2010). The biochar option to improve plant yields: first results from some field and pot experiments in Italy. Ital. J. Agron. 5 3–11. 10.4081/ija.2010.3 DOI

Biederman L. A., Harpole W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioener. 5 202–214. 10.1111/gcbb.12037 PubMed DOI

Brennan A., Jiménez E. M., Puschenreiter M., Albuquerque J. A., Switzer C. (2014). Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant Soil 379 351–360. 10.1007/s11104-014-2074-0 DOI

Bulgarelli D., Rott M., Schlaeppi K., Ver Loren van Themaat E., Ahmadinejad N., Assenza F., et al. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488 91–95. 10.1038/nature11336 PubMed DOI

Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13:581. 10.1038/nmeth.3869 PubMed DOI PMC

Carter M. R., Gregorich E. G. (2008). Soil Sampling and Methods of Analysis. 2nd Edition. Canadian Society of Soil Science. Boca Raton: CRC Press, 10.1201/9781420005271 DOI

Castaldi S., Riondino M., Baronti S., Esposito F. R., Marzaioli R., Rutigliano F. A., et al. (2011). Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and green house gas fluxes. Chemosphere 85 1464–1471. 10.1016/j.chemosphere.2011.08.031 PubMed DOI

Celestina C., Wood J. L., Manson J. B., Wang X., Sale P. W. G., Tang C., et al. (2019). Microbial communities in top- and subsoil of repacked soil columns respond differently to amendments but their diversity is negatively correlated with plant productivity. Sci. Rep. 9:8890. 10.1038/s41598-019-45368-9 PubMed DOI PMC

Chen D., Guo H., Li R., Li L., Pan G., Chang A., et al. (2016). Low uptake affinity cultivars with biochar to tackle Cd-tainted rice – A field study over four rice seasons in Hunan. China Sci. Total Environ. 541 1489–1498. 10.1016/j.scitotenv.2015.10.052 PubMed DOI

De Tender C., Haegeman A., Vandecasteele B., Clement L., Cremelie P., Dawyndt P., et al. (2016). Dynamics in the strawberry rhizosphere microbiome in response to biochar and Botrytis cinerea leaf infection. Front. Microbiol. 7:2062 10.3389/fmicb.2016.02062 PubMed DOI PMC

Dempster D. N., Gleeson D., Solaiman Z., Jones D. L., Murphy D. (2012). Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354 311–324. 10.1007/s11104-011-1067-5 DOI

Deng J., Yin Y., Zhu W., Zhou Y. (2018). Variations in soil bacterial community diversity and structures among different revegetation types in the Baishilazi Nature Reserve. Front. Microbiol. 9:2874. 10.3389/fmicb.2018.02874 PubMed DOI PMC

Di Cello F., Bevivino A., Chiarini L., Fani R., Paffetti D., Tabacchioni S., et al. (1997). Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl. Environ. Microbiol. 63 4485–4493. PubMed PMC

Elad Y., Cytryn E., Meller Harel Y., Lew B., Graber E. R. (2011). The biochar effect: plant resistance to biotic stresses. Phytopathol. Mediterr. 50 335–349. 10.14601/Phytopathol_Mediterr-9807 PubMed DOI

French E., Iyer-Pascuzzi A. S. (2018). A role for the gibberellins pathway in biochar-mediated growth promotion. Sci. Rep. 8:5389. 10.1038/s41598-018-23677-9 PubMed DOI PMC

Frenkel O., Jaiswal A. K., Elad Y., Lew B., Kammann C., Graber E. R. (2017). The effect of biochar on plant diseases: what should we learn while designing biochar substrates? J. Environ. Eng. Landsc. Manag. 25 105–113. 10.3846/16486897.2017.1307202 DOI

Han G., Lan J., Chen Q., Yu C., Bie S. (2017). Response of soil microbial community to application of biochar in cotton soils with different continuous cropping years. Sci. Rep. 7:101184. 10.1038/s41598-017-10427-6 PubMed DOI PMC

Hoagland D. R., Arnon D. I. eds. (1950). “The water-culture method for growing plants without soil,” in Circular and California Agricultural Experiment Station (Berkeley, CA: College of Agriculture, University of California; ), 32.

Jačka L., Trakal L., Ouřednìček P., Pohořelý M., Šìpek V. (2018). Biochar presence in soil significantly decreased saturated hydraulic conductivity due to swelling. Soil Till. Res. 184 181–185. 10.1016/j.still.2018.07.018 DOI

Jefferey S., Abalos D., Spokas K., Verheijen F. G. A. (2015). “Biochar effects on crop yield,” in Biochar for environmental Management. Science, Technology and Implementation Chapter 12, 2nd Edn, eds Lehmann J., Joseph S. (London: Routledge; ).

Jenkins J. R., Viger M., Arnold E. C., Harris Z. M., Ventura M., Miglietta F., et al. (2017). Biochar alters the soil microbiome and soil function: results of next-generation amplicon sequencing across Europe. GCB Bioenergy 9 591–612. 10.1111/gcbb.12371 DOI

Kaetzl K., Lübken M., Gehring T., Wichern M. (2018). Efficient low-cost anaerobic treatment of wastewater using biochar and woodchip filters. Water 10:818 10.3390/w10070818 DOI

Kammann C. I., Schmidt H.-P., Messerchmidt N., Linsel S., Steffens D., Müller C., et al. (2015). Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 5:11080. 10.1038/srep11080 PubMed DOI PMC

Keiluweit M., Nico P. S., Johnson M. G., Kleber M. (2010). Dynamic molecular structure of plant biomass derived black carbon (biochar). Environ. Sci. Technol. 44 1247–1253. 10.1021/es9031419 PubMed DOI

Kelly C. N., Calderón F. C., Acosta-Martínez V., Mikha M. M., Benjamin J., Rutherford D. W., et al. (2015). Switchgrass biochar effects on plant biomass and microbial dynamics in two soils from different regions. Pedosphere 25 329–342. 10.1016/S1002-0160(15)30001-1 DOI

Kiekens L. (1995). “Zinc,” in Heavy Metals in Soils, ed. Alloway B. J. (New York, NY: Springer US; ), 284–305.

Kim B.-R., Shin J., Guevarra R. B., Lee J. H., Kim D. W., Seol K.-H., et al. (2017). Deciphering diversity indeces for a better understanding of microbial communities. J. Microbiol. Biotechnol. 27 2089–2093. 10.4014/jmb.1709.09027 PubMed DOI

Kolton M., Graber E. R., Tsehansky L., Elad Y., Cytryn E. (2017). Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytol. 213 1393–1404. 10.1111/nph.14253 PubMed DOI

Kwak M.-J., Kong H. G., Choi K., Kwon S.-K., Song J. Y., Lee J., et al. (2018). Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36 1100–1109. 10.1038/nbt.4232 PubMed DOI

Lehmann J. (2007). Bio-energy in the black. Front. Ecol. Environ. 5:381–387. 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 DOI

Lehmann J., Rillig M. C., Thies J., Masiello C. A., Hockaday W. C., Crowley D. (2011). Biochar effects on soil biota – a review. Soil Biol. Biochem. 43 1812–1836. 10.1016/j.soilbio.2011.04.022 DOI

Lei O., Zhang R. (2013). Effects of biochar derived from different feedstock and pyrolysis temperatures on soil, physical and hydraulic properties. J Soils Sediments 13 1561–1572. 10.1007/s11368-013-0738-7 DOI

Li Q., Lei Z., Song X., Zhang Z., Ying Y., Peng C. (2018). Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition. Environ. Res. Lett. 13:044029 10.1088/1748-9326/aab53a DOI

Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genom Biol. 15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

Mahoney A. K., Yin C., Hulbert S. H. (2017). Community structure, species variation, and potential functions of rhizosphere-associated bacteria of different winter wheat (Triticum aestivum) cultivars. Front. Plant Sci. 8:132. 10.3389/fpls.2017.00132 PubMed DOI PMC

Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17 10–12. 10.14806/ej.17.1.200 DOI

Mašek O., Buss W., Roy-Poirier A., Lowe W., Peters C., Brownsort P., et al. (2018). Consistency of biochar properties over time and production scales: a characterisation of standard materials. J. Anal. Appl. Pyrol. 132 200–210. 10.1016/j.jaap.2018.02.020 DOI

Meng L., Sun T., Li M., Saleem M., Zhang Q., Wang C. (2019). Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress. Ecotox Environ. Safe 171 75–83. 10.1016/j.ecoenv.2018.12.065 PubMed DOI

Mollinedo J., Schumacher T. E., Chintala R. (2016). Biochar effects on phenotypic characteristics of “wild” and “sickle”. Medicago truncatula genotypes. Plant Soil 400 1–4. 10.1007/s11104-015-2708-x DOI

Olmo M. K., Albuquerque J. A., Barròn V., del Campillo M. C., Gallardo A., Fuentes M., et al. (2014). Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biol. Fertil. Soils 50 1177–1187. 10.1007/s00374-014-0959-y DOI

Palansooriya K. N., Wong J. T. F., Hashimoto Y., Huang L., Rinklebe J., Chang S. C., et al. (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar 1 3–22. 10.1007/s42773-019-00009-2 DOI

Pandit N. R., Mulder J., Hale S. E., Martinsen V., Schmidt H. P., Cornelissen G. (2018). Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Sci. Total Environ. 625 1380–1389. 10.1016/j.scitotenv.2018.01.022 PubMed DOI

Prajapati K., Modi H. A. (2012). The importance of potassium in plant growth – A review. Indian J. Plant Sci. 1 177–186.

Prendergast-Miller M. T., Duvall M., Sohi S. P. (2014). Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur. J. Soil Sci. 65 173–185. 10.1111/ejss.12079 DOI

Puga A. P., Abreu C. A., Melo L. C. A., Beesley L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J. Environ. Manag. 159 86–93. 10.1016/j.jenvman.2015.05.036 PubMed DOI

Qian X., Li H., Wang Y., Wu B., Wu M., Chen L., et al. (2019). Leaf and root endosphere harbor lower fungal diversity and less complex fungal co-occurrence patterns than rhizosphere. Front. Microbiol. 10:1015. 10.3389/fmicb.2019.01015 PubMed DOI PMC

Qiao Q., Wang F., Zhang J., Chen Y., Zhang C., Liu G., et al. (2017). Microbiome of cotton with soil type, genotype and developmental stage. Sci. Rep. 7:3940. 10.1038/s41598-017-04213-7 PubMed DOI PMC

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 D590–D596. 10.1093/nar/gks1219 PubMed DOI PMC

Quevauviller P. (1998). Operationally defined extraction procedures for soil and sediment analysis I. Standardization. Trends Analyt. Chem. 17 289–298. 10.1016/S0165-9936(97)00119-2 DOI

R Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Rex D., Schimmelpfenning S., Jansen-Willems A., Moser G., Kammann C., Müller C. (2015). Microbial community shifts 2.6 years after top dressing of Miscanthus biochar, hydrochar and feedstock on a temperate grassland site. Plant Soil 397 261–271. 10.1007/s11104-015-2618-y DOI

Richter-Heitmann T., Eickhorst T., Knauth S., Friedrich M. W., Schmidt H. (2016). Evaluation of strategies to separate root-associated microbial communities: a crucial choice in rhizobiome research. Front. Microbiol. 7:773. 10.3389/fmicb.2016.00773 PubMed DOI PMC

Romkens P. F. A. M., Bouwman L. A., Boon G. T. (1999). Effect of plant growth on copper solubility and speciation in soil solution samples. Environ. Pollut. 106 315–321. 10.1016/S0269-7491(99)00106-2 PubMed DOI

Rutigliano F. A., Romano M., Marzaioli R., Baglivo I., Baronti S., Miglietta F. (2014). Effect of biochar addition on soil microbial community in a wheat crop. Eur. J. Soil Biol. 60 9–15. 10.1016/j.ejsobi.2013.10.007 DOI

Shade A., Handelsman J. (2012). Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol. 14 4–12. 10.1111/j.1462-2920.2011.02585.x PubMed DOI

Shen Z., Zhang Y., Jin F., McMillan O., Al-Tabbaa A. (2017a). Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars. Sci. Total Environ. 609 1401–1410. 10.1016/j.scitotenv.2017.08.008 PubMed DOI

Shen Z., Zhang Y., McMillan O., Jin F., Al-Tabbaa A. (2017b). Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environ. Sci. Pollut. Res. 24 12809–12819. 10.1007/s11356-017-8847-2 PubMed DOI PMC

Smiley R. W. (1974). Rhizosphere pH as influenced by plants, soils and nitrogen fertilizers”. Soil Sci. Soc. Am. J. Abstr. 38 795–799. 10.2136/sssaj1974.03615995003800050030x DOI

Solaiman Z. M., Blackwell P., Abbott L. K., Storer P. (2010). Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Aust. J. Soil Res. 48 546–554. 10.1071/SR10002 DOI

Stephens M. (2016). False discovery rates: a new deal. Biostatistics 18:2. 10.1093/biostatistics/kxw041 PubMed DOI PMC

Sun H., Shi W., Zhou M., Ma X., Zhang H. (2019). Effect of biochar on nitrogen use efficiency, grain yield and amino acid content of wheat cultivated on saline soil. Plant Soil Environ. 65 83–89. 10.17221/525/2018-PSE DOI

Takahashi S., Tomita J., Nishioka K., Hisada T., Nishijima M. (2014). Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archea using next-generation sequencing. PLoS One 9:e105592. 10.1371/journal.pone.0105592 PubMed DOI PMC

Tammeorg P., Simojoki A., Mäkelä P., Stoddard F. L., Alakukku L., Helenius J. (2014). Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant Soil 374 89–107. 10.1007/s11104-013-1851-5 DOI

Trakal L., Raya-Moreno I., Mitchell K., Beesley L. (2017). Stabilization of metal(loid)s in two contaminated agricultural soils: comparing biochar to its non-pyrolysed source material. Chemosphere 181 150–159. 10.1016/j.chemosphere.2017.04.064 PubMed DOI

UK Biochar Research Center (2014). WSP700 Standard Biochar Specification Sheet. (–)Version 1.0.

USDA (2011). Carbon to Nitrogen Rations in Cropping Systems. Greensboro, NC: NRCS East National Technology Support Center.

USDA Soil Survey Staff (2014). “Soil survey field and laboratory methods manual,” in Soil Survey Investigations Report No. 51, Version 2.0, eds Burt R. and Soil Survey Staff, (Washington, DC: U.S. Department of Agriculture; ).

Vaccari F. P., Baronti S., Lugato E., Genesio L., Castaldi S., Fornasier F., et al. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur. J. Agron. 34 231–238. 10.1016/j.eja.2011.01.006 DOI

Wan X. H., Huang Z. Q., He Z. M., Yu Z. P., Wang M. H., Davis M. R., et al. (2015). Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 387 103–116. 10.1007/s11104-014-2277-4 DOI

Wang R., Wei S., Jia P., Liu T., Hou D., Xie R., et al. (2019). Biochar significantly alters rhizobacterial communities and reduces Cd concentration in rice grains grown on Cd-contaminated soils. Sci. Total Environ. 676 627–638. 10.1016/j.scitotenv.2019.04.133 PubMed DOI

Wang Y., Hu Y., Zhao X., Wang S., Xing G. (2013). Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy Fuels 27 5890–5899. 10.1021/ef400972z DOI

Wiedner K., Rumpel C., Steiner C., Pozzi A., Maas R., Glaser B. (2013). Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass Bioenergy 59 264–278. 10.1016/j.biombioe.2013.08.026 DOI

Xiang Y., Deng Q., Duan H., Guo Y. (2017). Effects of biochar application on root traits: a meta-analysis. GCB Bioenergy 9 1563–1572. 10.1111/gcbb.12449 DOI

Zama E. F., Reid B. J., Arp H. P. H., Sun G. X., Yuan H. Y., Zhu Y. G. (2018). Advances in research on the use of biochar in soil for remediation: a review. J. Soils Sediments 18:2433 10.1007/s11368-018-2000-9 DOI

Zemanová V., Trakal L., Ochecová P., Szaková J., Pavliková D. (2014). A model experiment: competitive sorption of Cd, Cu, Pb and Zn by three different soils. Soil Water Res. 9 97–103. 10.17221/50/2013-SWR DOI

Zhang H., Chen C., Gray E. M., Boyd S. E. (2017). Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass Bioenergy 105 136–146. 10.1016/j.biombioe.2017.06.024 DOI

Zhang X., Wang H., He L., Lu K., Sarmah A., Li J., et al. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. Res. 20 8472–8483. 10.1007/s11356-013-1659-0 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...